# Algebra

Submitted By bhagat1004
Words 764
Pages 4
Service Description
1. Corporate Finance & Financial Management:

Historical performance; Time value of money: compounding, discounting, present values and future values, annuities and perpetuities, etc.; Interest rates and bond valuation; Dividends and stock valuation and dividend policy; Capital budgeting: NPV, IRR, payback period, profitability index, etc.; Risk, return and security market line: beta estimation, CAPM; Cost of capital, financial leverage, capital structure, etc; Cash and liquidity, credit and inventory management; International corporate finance; Risk management and financial engineering; Options and option valuation; Mergers and acquisitions

2. Accounting for Financial Statements:

Preparation of income statement, balance sheet and statement of cash flows: Accounting for specialized items: Property, Plant & Equipment, bad debts; provisions; financial instruments; leases; employee benefits; income taxes; revenues,; foreign currency transactions etc.;Accounting for mergers and consolidations; IFRS vs GAAP; Financial statement analysis

3. Cost and Management Accounting:

Cost concepts; Job-order costing vs process costing;ABC Costing; Marginal costing vs absorption costing: CVP analysis; Relevant costs: special order, make or buy decisions; ROA, residual income and economic value added; Standard costing and variance analysis; EOQ and linear programming

4. Quantitative Methods and Business Mathematics:

Algebra and logarithm; Series and progressions; Probability, confidence intervals and testing; Measures of central tendency and measures of dispersion; Simple and compound interest: compounding and discounting;Differentiation and integration; Regression and correlation

Vision, mission and strategy; Human resource management : recruitment and retention, performance measurement and development,...

### Similar Documents

#### Algebra

...What is Algebra? Algebra is a branch of mathematics that uses mathematical statements to describe relationships between things that vary over time. These variables include things like the relationship between supply of an object and its price. When we use a mathematical statement to describe a relationship, we often use letters to represent the quantity that varies, sisnce it is not a fixed amount. These letters and symbols are referred to as variables. (See the Appendix One for a brief review of constants and variables.) The mathematical statements that describe relationships are expressed using algebraic terms, expressions, or equations (mathematical statements containing letters or symbols to represent numbers). Before we use algebra to find information about these kinds of relationships, it is important to first cover some basic terminology. In this unit we will first define terms, expressions, and equations. In the remaining units in this book we will review how to work with algebraic expressions, solve equations, and how to construct algebraic equations that describe a relationship. We will also introduce the notation used in algebra as we move through this unit. History of algebra The history of algebra began in ancient Egypt and Babylon, where people learned to solve linear (ax = b) and quadratic (ax2 + bx = c) equations, as well as indeterminate equations such as x2 + y2 = z2, whereby several unknowns are involved. The ancient Babylonians solved......

Words: 1079 - Pages: 5

Free Essay

#### Algebra

...Week four assignment MAT221: introduction to algebra Thurman Solana July 7, 2013 Below we will go through a few equations for this week’s assignment. I will show my knowledge of how to properly find the correct answers to each problem. As well as showing my knowledge of the words: Like terms FOIL Descending Order Dividend and Divisor. Compound semiannually On page 304 problem #90 states “P dollars is invested at annual interest rates r for one year. If the interest rate is compounded semiannually then the polynomial p(1+r2) represents the value of investment after one year. Rewrite the problem without the equation.”(Algebra) For the first equation p will stand for 200 and r will stand for 10%. First I need to turn the interest rate into a decimal. 10%=0.1. Now I can rewrite the equation.2001+0.122. Now that I have my equation written out I can start to solve. I start by dividing 0.1 by 2 to get 0.05. Now I can rewrite 2001+0.052. First I add the 1 and 0.05 giving me 1.05 to square. Any number times itself is called squaring. So now we square (1.05)*(1.05)=(1.1025). Again we rewrite our equation 200*1.1025=220.5. Now we can remove the parentheses leaving us with an answer of 220.5. The answer for this first part of 2001+0.0122=220.5. Second Part On this second part let p stand for 5670 and r will stand for 3.5%. Again I start by turning my percentage into a decimal 3.5%=0.035. Now that we have our decimal we can write out our equation......

Words: 594 - Pages: 3

Free Essay

#### Algebra Assignment

...Many people are intimidated and afraid of mathematics and algebra largely due to the fact that upon first glance, certain problems or expressions may seem overwhelmingly large, difficult, or complicated. Along with remembering formulas, this can often times lead to anger, confusion, and frustration. There are several very important key elements and aspects involved within mathematics that helps combat this confusion and frustration and can even help the most intimidated person feel at ease and comfortable with solving these problems. This particular report will demonstrate the importance of understanding certain key mathematical principles and components and show how understanding and utilizing certain mathematical definitions can help limit the amount of confusion and intimidation one may have. These definitions include but are not limited to simplifying, adding like terms, coefficient, distributive property, and removing parenthesis. This report will also demonstrate how much easier and more simplistic mathematics and algebra can be by remembering and utilizing just a few important concepts. Example 1: 2^a(a-5) +4(a-5) This is the first example that will be used. The variable a is used. This particular example has a coefficient of two. Step 1: The distributive property can be utilized to multiply 2a by everything inside of the parenthesis (a-5 in this case) resulting in: 2a^2-10a Step 2: The distributive property is used once again to multiply 4 by everything in......

Words: 645 - Pages: 3

#### Relational Algebra

...The relational algebra is a theoretical language with operations that work on one or more relations to define another relation without changing the original relation. Thus, both the operands and the results are relations; hence the output from one operation can become the input to another operation. This allows expressions to be nested in the relational algebra. This property is called closure. Relational algebra is an abstract language, which means that the queries formulated in relational algebra are not intended to be executed on a computer. Relational algebra consists of group of relational operators that can be used to manipulate relations to obtain a desired result. Knowledge about relational algebra allows us to understand query execution and optimization in relational database management system. Role of Relational Algebra in DBMS Knowledge about relational algebra allows us to understand query execution and optimization in relational database management system. The role of relational algebra in DBMS is shown in Fig. 3.1. From the figure it is evident that when a SQL query has to be converted into an executable code, first it has to be parsed to a valid relational algebraic expression, then there should be a proper query execution plan to speed up the data retrieval. The query execution plan is given by query optimizer. Relational Algebra Operations Operations in relational algebra can be broadly classified into set operation and database......

Words: 344 - Pages: 2

#### History of Algebra

...History of algebra The history of algebra began in ancient Egypt and Babylon, where people learned to solve linear (ax = b) and quadratic (ax2 + bx = c) equations, as well as indeterminate equations such as x2 + y2 = z2, whereby several unknowns are involved. The ancient Babylonians solved arbitrary quadratic equations by essentially the same procedures taught today. They also could solve some indeterminate equations. The Alexandrian mathematicians Hero of Alexandria and Diophantus continued the traditions of Egypt and Babylon, but Diophantus's book Arithmetica is on a much higher level and gives many surprising solutions to difficult indeterminate equations. This ancient knowledge of solutions of equations in turn found a home early in the Islamic world, where it was known as the "science of restoration and balancing." (The Arabic word for restoration, al-jabru,is the root of the word algebra.) In the 9th century, the Arab mathematician al-Khwarizmi wrote one of the first Arabic algebras, a systematic exposé of the basic theory of equations, with both examples and proofs. By the end of the 9th century, the Egyptian mathematician Abu Kamil had stated and proved the basic laws and identities of algebra and solved such complicated problems as finding x, y, and z such that x + y + z = 10, x2 + y2 = z2, and xz = y2. Ancient civilizations wrote out algebraic expressions using only occasional abbreviations, but by medieval times Islamic mathematicians were able to talk about......

Words: 893 - Pages: 4

#### Algebra 2

...Algebra 2 Lesson 5-5 Example 1 Equation with Rational Roots Solve 2x2 – 36x + 162 = 32 by using the Square Root Property. 2x2 – 36x + 162 = 32 Original equation 2(x2 – 18x + 81) = 2(16) Factor out the GCF. x2 – 18x + 81 = 16 Divide each side by 2. (x – 9)2 = 16 Factor the perfect trinomial square. x – 9 = Square Root Property x – 9 = ±4 = 4 x = 9 ± 4 Add 9 to each side. x = 9 + 4 or x = 9 – 4 Write as two equations. x = 13 x = 5 Solve each equation. The solution set is {5, 13}. You can check this result by using factoring to solve the original equation. Example 2 Equation with Irrational Roots Solve x2 + 10x + 25 = 108 by using the Square Root Property. x2 + 10x + 25 = 108 Original equation (x + 5)2 = 108 Factor the perfect square trinomial. x + 5 = Square Root Property x = –5 ±6 Add –5 to each side; = 6 x = –5 + 6 or x = –5 – 6 Write as two equations. x ≈ 5.4 x ≈ –15.4 Use a calculator. The exact solutions of this equation are –5 – 6 and –5 + 6. The approximate solutions are –15.4 and 5.4. Check these results by finding and graphing the related quadratic function. x2 + 10x + 25 = 108 Original equation x2 + 10x – 83 = 0 Subtract 108 from each side. y = x2 + 10x – 83 Related quadratic function. CHECK Use the ZERO function of a graphing calculator. The approximate zeros of the...

Words: 605 - Pages: 3

Free Essay

#### Algebra

...Name: ______________________ Class: _________________ Date: _________ ID: A Solving Real-World problems with System of Linear Equations ____ 1 Mr. Frankel bought 7 tickets to a puppet show and spent \$43. He bought a combination of child tickets for \$4 each and adult tickets for \$9 each. Which system of equations below will determine the number of adult tickets, a, and the number of child tickets, c, he bought? A. a = c - 9 9a + 4c = 43 B. 9a + 4c = 43 a +c=7 C. a + c = 301 a +c=7 D. 4a + 4c = 50 a +c=7 2 Tyrone is packaging a mix of bluegrass seed and drought-resistant seed for people buying grass seed for their lawns. The bluegrass seed costs him \$2 per pound while the drought-resistant grass seed costs him \$3 per pound. a. Write an equation showing that Tyrone spent \$68 altogether for the two types of grass seed. b. Write an equation showing that Tyrone bought a total of 25 lb of the two types of grass seed. c. Solve the system of equations to find out how many pounds of each type of grass seed Tyrone bought. Mr. Jarvis invested a total of \$9,112 in two savings accounts. One account earns 7.5% simple interest per year and the other earns 8.5% simple interest per year. Last year, the two investments earned a total of \$884.88 in interest. Write a system of equations that could be used to determine the amount Mr. Jarvis initially invested in each account. Let x represent the amount invested at 7.5% and let y represent the amount invested at 8.5%. A. x + y = 9, 112 0.075x +...

Words: 1009 - Pages: 5

Free Essay

#### Math Algebra

...MAPÚA INSTITUTE OF TECHNOLOGY Department of Mathematics COURSE SYLLABUS 1. Course Code: Math 10-3 2. Course Title: Algebra 3. Pre-requisite: none 4. Co-requisite: none 5. Credit: 3 units 6. Course Description: This course covers discussions on a wide range of topics necessary to meet the demands of college mathematics. The course discussion starts with an introductory set theories then progresses to cover the following topics: the real number system, algebraic expressions, rational expressions, rational exponents and radicals, linear and quadratic equations and their applications, inequalities, and ratio, proportion and variations. 7. Student Outcomes and Relationship to Program Educational Objectives Student Outcomes Program Educational Objectives 1 2 (a) an ability to apply knowledge of mathematics, science, and engineering √ (b) an ability to design and conduct experiments, as well as to analyze and interpret from data √ (c) an ability to design a system, component, or process to meet desired needs √ (d) an ability to function on multidisciplinary teams √ √ (e) an ability to identify, formulate, and solve engineering problems √ (f) an understanding of professional and ethical responsibility √ (g) an ability to communicate effectively √ √ (h) the broad education necessary to understand the impact of engineering solutions in the global and societal context √ √ (i) a recognition of the need for, and an ability to......

Words: 1522 - Pages: 7

Free Essay

#### Algebra Syllabus

Words: 2141 - Pages: 9

Free Essay

#### Algebra 1

Words: 280 - Pages: 2

#### College Algebra Equation

...1.1 EXERCISE SET In Exercises 1–14, write each English phrase as an algebraic expression. Let x represent the number. 1. Five more than a number X+5 3. Four less than a number X-4 5. Four times a number 4X 7. Ten more than twice a number 2X+10 9. The difference of six and half of a number 6 – ½X 11. Two less than the quotient of four and a number 4/X -2 13. The quotient of three and the difference of five and a number = 3/5-X In Exercises 15–26, evaluate each algebraic expression for the given value or values of the variable(s). 15. 7 + 5x, for x = 10 7+5.10 7+50 = 57 17. 6x − y, for x = 3 and y = 8 6.3-8 18-8=10 19. x2 + 3x, for = 1 10/9 21. x2 − 6x + 3, for x = 7 49-42+3 = 10 23. 4 + 5(x − 7)3, for x = 9 4+5 (9.-7 ) ³ 4+5 (2)³ 4+5.8 4+40 = 44 25. x2 − 3(x − y), for x = 8 and y = 2 X²-3X+3Y 8²-3 (8)+3(2) 64-24+6 = 46 expresses the relationship between Fahrenheit temperature, F, and Celsius temperature, C. In Exercises 95–96, use the formula to convert the given Fahrenheit temperature to its equivalent temperature on the Celsius scale. 95. 50°F = 10 C = ( 50-32) = 5/9 C = (12 ) 5/9 C+ 10 A football was kicked vertically upward from a height of 4 feet with an initial speed of 60 feet per second. The formula H= 4+60t -16t² describes the ball’s height above the ground, h, in feet, t seconds after it was kicked. Use this formula to solve Exercises 97–98. 97. What was the ball’s height 2......

Words: 804 - Pages: 4

Free Essay

#### Algebra Test

...Algebra 2 Honors Name ________________________________________ Test #1 1st 9-weeks September 2, 2011 SHOW ALL WORK to ensure maximum credit. Each question is worth 10 points for a total of 100 points possible. Extra credit is awarded for dressing up. 1. Write the solutions represented below in interval notation. A.) [pic] B.) [pic] 2. Use the tax formula [pic] A.) Solve for I. B.) What is the income, I, when the Tax value, T, is \$184? 3. The M&M’s company makes individual bags of M&M’s for sale. In production, the company allows between 20 and 26 m&m’s, including 20 and 26. Write an absolute value inequality describing the acceptable number of m&m’s in each bag. EXPLAIN your reasoning. 4. Solve and graph the solution. [pic] 5. Solve and graph the solution. [pic] 6. Solve. [pic] 7. Solve. [pic] 8. True or False. If false, EXPLAIN why it is false. A.) An absolute value equation always has two solutions. B.) 3 is a solution to the absolute value inequality [pic] C.) 8 is a solution to the compound inequality x < 10 AND x > 0. 9. Solve for w. [pic] 10. You plant a 1.5 foot tall sawtooth oak that grows 3.5 feet per year. You want to know how many years it would take for the tree to outgrow your 20 foot roof. A.) Write an inequality that defines x as the number of years of growth. B.) Determine the number of years, to nearest hundredth,......

Words: 258 - Pages: 2

Free Essay

#### Linear Algebra

Words: 229129 - Pages: 917

Free Essay

#### A Brief Look at the Origin of Algebra

...A Brief Look at the Origin of Algebra Connie Beach Professor Clifton E. Collins, Sr. Math 105: Introduction to College Mathematics May 22, 2010   Abstract In this paper we look at the history of algebra and some of its different writers. Algebra originated in ancient Egypt and Babylon around 1650 B.C. Diophantus of Alexandria, a Greek mathematician, and Abū ʿAbdallāh Muḥammad ibn Mūsā al-Khwārizmī, a Persian mathematician from Baghdad, astronomer and geographer, shared the credit of being the founders of algebra. Diophantus, who is known as the “father of algebra”, carried on the work of the ancient Egyptians and Babylonians, but the word Algebra actually came from the word al-jabr, which is from al-Khwārizmī’s work, Kitab al-Jabr wa-l-Muqabala. The algebraic notation had gone through 3 stages: rhetorical (or verbal), stage, syncopated (use of abbreviated words) stage, and symbolism (the use of letters for the unknown) stage. As a matter of fact, the algebra that we know of today began during the 16th century, even though its history shows that it began almost 4000 years ago.   A Brief Look at the Origin of Algebra I have always had a love for math. My favorite math class was Algebra; in fact, I had taken Algebra I, II, III, and IV all through high school, and aced every class. I can just look at a problem and know the answer. Then, I returned to college after 30 years, and took an Intro to College Math class. I wasn’t sure if I still remembered what I had learned...

Words: 842 - Pages: 4