Premium Essay

Cranston Coils Regression Case

In: Business and Management

Submitted By LCbiomed11
Words 1753
Pages 8
Lauren Liwen
MBA 608
Dr. Turek
Cranston Coils Regression Case

Executive Summary The Cobb-Douglas cost function of Cranston Coils was found using output, capital, and labor data from their eighteen plants. The cost function, Q = (0.40692) K0.32477 L0.79466, was used to determine the short-run cost equations of total cost, average cost, average variable cost and marginal cost. Calculations using these equations gave rise to Cranston Coils cost structure, which predicts cash flow within the company. Cranston Coils’ cost function was also used to determine if a contract between Sleep Easy and Cranston Coils should be accepted. After determining marginal cost and revenue (see Appendix 5: Sleep Easy Contract Costs at Connecticut Plant), the contract should be accepted.
Problem Definition The short-run cost structure of the new Cranston Coils facility in Connecticut needs to be determined in order to predict the cash flow of the new plant. Once the cost structure is defined, the cost function can be used to evaluate whether or not certain contracts should be accepted, such as the Sleep Easy Company’s proposed contract of fifty units at $70.00 per unit.
Identification of Possible Solutions The short-run cost equations of Cranston Coils indicate that the cost structure varies between the plants because of the significant discrepancy between the marginal costs of each plant. One possible solution would be to reevaluate each plant’s marginal product of labor and marginal product of capital in order to determine where the discrepancies are occurring. After these calculations have been conducted, each plant should seek to adjust their input in order to maximize output. The optimal way to conduct this is to find where total revenue equals total cost, and set the inputs of cost (capital and labor) to the appropriate levels. For plants unable to reach profit…...

Similar Documents

Premium Essay

Multiple Regression

...Introduction to Multiple Regression Dale E. Berger Claremont Graduate University http://wise.cgu.edu Overview Multiple regression is a flexible method of data analysis that may be appropriate whenever a quantitative variable (the dependent or criterion variable) is to be examined in relationship to any other factors (expressed as independent or predictor variables). Relationships may be nonlinear, independent variables may be quantitative or qualitative, and one can examine the effects of a single variable or multiple variables with or without the effects of other variables taken into account (Cohen, Cohen, West, & Aiken, 2003). Multiple Regression Models and Significance Tests Many practical questions involve the relationship between a dependent or criterion variable of interest (call it Y) and a set of k independent variables or potential predictor variables (call them X1, X2, X3,..., Xk), where the scores on all variables are measured for N cases. For example, you might be interested in predicting performance on a job (Y) using information on years of experience (X1), performance in a training program (X2), and performance on an aptitude test (X3). A multiple regression equation for predicting Y can be expressed a follows: (1) [pic] To apply the equation, each Xj score for an individual case is multiplied by the corresponding Bj value, the products are added together, and the constant A is added to......

Words: 1415 - Pages: 6

Premium Essay

Regression Models

...Regression Models Student Name Grantham University BA/520 – Quantitative Analysis Instructor Name April 6, 2013 Abstract This paper will refer to regression models and the benefits that variables provide when developing and examining such models. Also, it will discuss the reason why scatter diagrams are used and will describe the simple linear regression model and will refer to multiple regression analysis as well as the potential uses for this type of model. Regression Models Regression models are a statistical measure that attempts to determine the strength of the relationship between one dependent variable (usually denoted by Y) and a series of other changing variables (known as independent variables). Regression models provide the scientist with a powerful tool, allowing predictions about past, present, or future events to be made with information about past or present events. Inference based on such models is known as regression analysis. The main purpose of regression analysis is to predict the value of a dependent or response variable based on values of the independent or explanatory variables. According to Render, Stair, and Hanna (2011) they are two reasons for which regression analyses are used: one is to understand the relation between various variables and the second is to predict the variable's value based on the value of the other. Variables provide many advantages when creating models. One of the......

Words: 1282 - Pages: 6

Premium Essay

Regression

...Regression Analysis: Basic Concepts Allin Cottrell∗ 1 The simple linear model Suppose we reckon that some variable of interest, y, is ‘driven by’ some other variable x. We then call y the dependent variable and x the independent variable. In addition, suppose that the relationship between y and x is basically linear, but is inexact: besides its determination by x, y has a random component, u, which we call the ‘disturbance’ or ‘error’. Let i index the observations on the data pairs (x, y). The simple linear model formalizes the ideas just stated: yi = β0 + β1 xi + ui The parameters β0 and β1 represent the y-intercept and the slope of the relationship, respectively. In order to work with this model we need to make some assumptions about the behavior of the error term. For now we’ll assume three things: E(ui ) = 0 2 2 E(ui ) = σu E(ui u j ) = 0, i = j u has a mean of zero for all i it has the same variance for all i no correlation across observations We’ll see later how to check whether these assumptions are met, and also what resources we have for dealing with a situation where they’re not met. We have just made a bunch of assumptions about what is ‘really going on’ between y and x, but we’d like to put numbers on the parameters βo and β1 . Well, suppose we’re able to gather a sample of data on x and y. The task ˆ of estimation is then to come up with coefficients—numbers that we can calculate from the data, call them β0 and ˆ1 —which serve as estimates of the unknown......

Words: 1464 - Pages: 6

Premium Essay

Regression

...Q1: All the regressions were performed. Output can be made available if needed. See outputs for Q2 in appendix. Q2: Select the model you are going to keep for each brand and explain WHY. Report the corresponding output in an appendix attached to your report (hence, 1 output per brand) We use Adjusted R Squared to compare the Linear or Semilog Regression. R^2 is a statistic that will give some information about the goodness of fit of a model. In regression, the Adjusted R^2 coefficient of determination is a statistical measure of how well the regression line approximates the real data points. An R2 of 1 indicates that the regression line perfectly fits the data. Brand1: Linear Regression R^2 | 0.594 | SemiLog Regression R^2 | 0.563 | We use the Linear Regression Model since R-squared is higher. Brand 2: Linear Regression R^2 | 0.758 | SemiLog Regression R^2 | 0.588 | We use the Linear Regression Model since R-squared is higher Brand 3: Linear Regression R^2 | 0.352 | SemiLog Regression R^2 | 0.571 | We use the Semilog Regression Model since R-squared is higher Brand 4: Linear Regression R^2 | 0.864 | SemiLog Regression R^2 | 0.603 | We use the Linear Regression Model since R-squared is higher Q3: Here we compute the cross-price elasticity. Depending on whether we use linear or semi-log model, Linear Model Linear Model Semi-Log Model Semi-Log Model ` ...

Words: 609 - Pages: 3

Free Essay

Fan Coil

...Fan Coil Routine Cleaning 1. Gather all necessary equipment and supplies prior to setting up at the fan coil, see below. 2. Prepare the fan coil for servicing by clearing a work space around the unit and proceed to cover the floor with a sheet of clean 4 or 6 mil polyethylene sheeting. 3. Set up at the fan coil unit being careful not to use the occupants’ furniture as a work station. 4. Turn both the thermostat and the circuit breaker to the OFF position which supplies electricity to the fan coil. Take note of the thermostat settings prior to turning the unit off. 5. Workers are required to wear eye protection, allergy free disposable gloves and a disposable respirator with a minimum NIOSH rating of 95 (see attached link). http://www.grainger.com/Grainger/items/4VT69 6. Remove the return grill and filter cartridge. The power switch inside the unit must also be turned OFF before proceeding. 7. If either the return grill (lower) or discharge grill (upper) are dirty take them outside or to a maintenance area with a hose and thoroughly clean both sides using a mild detergent and warm water. Dry completely before re-installing. Inspect the air filter and replace as needed or at least every six month. 8. Visually assess the interior condition of the fan coil (i.e. coil surface condition and cleanliness, water level and cleanliness inside the bottom condensate pan, wiring connection for damage, rust or algae growth. If conditions warrant follow the cleaning instruction outlined......

Words: 891 - Pages: 4

Premium Essay

Regression

...relationships between the variables. The relationships can either be negative or positive. This is told by whether the graph increases or decreases. Benefits and Intrinsic Job Satisfaction Regression output from Excel SUMMARY OUTPUT Regression Statistics Multiple R 0.069642247 R Square 0.004850043 Adjusted R Square -0.00471871 Standard Error 0.893876875 Observations 106 ANOVA df SS MS F Significance F Regression 1 0.404991362 0.404991 0.50686 0.478094147 Residual 104 83.09765015 0.799016 Total 105 83.50264151 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 5.506191723 0.363736853 15.13784 4.8E-28 4.784887893 6.2274956 4.7848879 6.22749555 Benefits -0.05716561 0.080295211 -0.711943 0.47809 -0.21639402 0.1020628 -0.216394 0.10206281 Y=5.5062+-0.0572x Graph Benefits and Extrinsic Job Satisfaction Regression output from Excel SUMMARY OUTPUT Regression Statistics Multiple R 0.161906 R Square 0.026214 Adjusted R Square 0.01685 Standard Error 1.001305 Observations 106 ANOVA df SS MS F Significance F Regression 1 2.806919 2.806919 2.799606 0.097293 Residual 104 104.2717 1.002612 Total 105 107.0786 Coefficients Standard Error t Stat P-value Lower 95% Upper......

Words: 653 - Pages: 3

Premium Essay

Regression

...STATISTICS FOR ENGINEERS (EQT 373) TUTORIAL CHAPTER 3 – INTRODUCTORY LINEAR REGRESSION 1) Given 5 observations for two variables, x and y. | 3 | 12 | 6 | 20 | 14 | | 55 | 40 | 55 | 10 | 15 | a. Develop a scatter diagram for these data. b. What does the scatter diagram developed in part (a) indicate about the relationship between the two variables? c. Develop the estimated regression equation by computing the values and. d. Use the estimated regression equation to predict the value of y when x=10. e. Compute the coefficient of determination. Comment on the goodness of fit. f. Compute the sample correlation coefficient (r) and explain the result. 2) The Tenaga Elektik MN Company is studying the relationship between kilowatt-hours (thousands) used and the number of room in a private single-family residence. A random sample of 10 homes yielded the following. Number of rooms | Kilowatt-Hours (thousands) | 12 9 14 6 10 8 10 10 5 7 | 9 7 10 5 8 6 8 10 4 7 | a. Identify the independent and dependent variable. b. Compute the coefficient of correlation and explain. c. Compute the coefficient of determination and explain. d. Test whether there is a positive correlation between both variables. Use α=0.05. e. Determine the regression equation (used Least Square method) f. Determine the value of kilowatt-hours used if number of rooms is 11. g. Can you use the model in (f.) to predict the kilowatt-hours if number of......

Words: 1184 - Pages: 5

Premium Essay

Nissan Cranston Case Study

... 3. All references must be fully cited in Harvard/ APA notation. 4. Plagiarism in any form will result in severe penalties. 5. Work submitted within up to 7 calendar days late = 10 marks subtracted. 6. Work submitted up to 10 calendar days late = 20 marks subtracted. 7. Work submitted more than 10 calendar days late = 1 marks awarded. | Declaration: I declare that a) No part of this assignment has been copied from any other person’s work except where due acknowledgement is made in the text. b) No part of this assignment had been written for me by any other person except where such collaboration has been authorized by lecturer concerned. c) All grades obtained by students are final. Appeal can only be made (on FAIL case only) to the Academic Borad along with a payment of RM 100.00 to formalise the Process.d) the University/ College uses plagiarism detection software.Student Signature _NGU PEI PEI @ PEGGY Date 10TH MAY 2014___ | SECTION B: EXAM COORDINATOR USE ONLY SECTION B: EXAM COORDINATOR USE ONLY The Examiner’s Remark: | Date Received: | Marks &/or Grade: | Received By: | Lecturer: | Exam Coordinator Use Only | Date Received: | Subject Title: | Received By: | Lecturer: | N.B: A tutor has, and may exercise a right not to mark this assignment if the above declaration has not been signed. If the above declaration is found......

Words: 5790 - Pages: 24

Premium Essay

Regression Report

...Probability, Statistics, and Forecasting OPRE 433 Fall 2013 Regression Report Xie Gehui (gxx24@case.edu) Dec 2, 2013 I. Introduction The data set given contains more than one independent variable, so the target of our regression analysis is to build an appropriate multiple regression model. To realize this target, we have to build a multiple linear regression model to test the regression assumptions: model appropriateness, constant variance, independence, and normality. Certainly we need to modify the data set or the model itself to satisfy these assumptions, and at last get the model acceptable. In the original data set that we are going to deal with in this report, there are 20,640 observations of 8 explanatory variables labeled X1, X2, X3, X4, X5, X6, X7, X8 and 1 dependent variable labeled Y. All of the 9 variables are continuous. II. Method of analysis To check the model appropriateness assumption, we need to make sure the functional form is correct. The residual plot will show the pattern suggesting the form of an appropriate model. To check the validity of the constant variance assumption, we need to examine residual plots. A residual plot with a horizontal band appearance suggests that the spread of the error terms around 0 is not changing much as the horizontal plot value increases. Such a plot tells us that the constant variance assumption approximately holds. To check the independence assumption, we need to detect if any positive......

Words: 1536 - Pages: 7

Premium Essay

Regression Analysis

...Acts 430 Regression Analysis In this project, we are required to forecast number of houses sold in the United States by creating a regression analysis using the SAS program. We initially find out the dependent variable which known as HSN1F. 30-yr conventional Mortgage rate, real import of good and money stock, these three different kinds of data we considered as independent variables, which can be seen as the factors will impact the market of house sold in USA. Intuitively, we thought 30-yr conventional mortgage rate is a significant factor that will influences our behavior in house sold market, which has a negative relation with number of house sold. When mortgage rate increases, which means people are paying relatively more to buy a house, which will leads to a decrease tendency in house sold market. By contrast, a lower interest rate would impulse the market. We believe that real import good and service is another factor that will causes up and down in house sold market. When a large amount of goods and services imported by a country, that means we give out a lot of money to other country. In other words, people have less money, the sales of houses decreased. Otherwise, less import of goods and services indicates an increase tendency in house sold market. We can see it also has a negative relationship with the number of house sold. Lastly, we have money stock as our third impact factor of house sold. We considered it has a positive relationship with the number of...

Words: 723 - Pages: 3

Premium Essay

Regression

...A) Estimated regression equation – First Order: y = β0 + β1x1 + β2x2 + ε Output of 1st Model | | | | | | | | | | | | | | Regression Statistics | | | | | | Multiple R | 0.763064634 | | | | | | R Square | 0.582267636 | SSR/SST | | ̂̂̂ | | | Adjusted R Square | 0.512645575 | | | | | | Standard Error | 547.737482 | | | | | | Observations | 15 | | | | | | | | | | | | | ANOVA | | | | | | |   | df | SS | MS | F | Significance F | | Regression | 2 | 5018231.543 | 2509115.772 | 8.363263464 | 0.005313599 | | Residual | 12 | 3600196.19 | 300016.3492 | | | | Total | 14 | 8618427.733 |   |   |   | | | | | | | | |   | Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Intercept | -20.35201243 | 652.7453202 | -0.031179101 | 0.975639286 | -1442.561891 | 1401.857866 | Age (x1) | 13.35044655 | 7.671676501 | 1.740225432 | 0.107375657 | -3.364700634 | 30.06559374 | Hours (x2) | 243.7144645 | 63.51173661 | 3.837313819 | 0.002363965 | 105.334278 | 382.0946511 | B) equation | ŷ= -20.3520124320994 + 13.3504465516772 x̂1 + 243.714464532425 x̂2 | C) Interpretation of β β̂1 = 13.35044655, If number of hours worked (x2) held fixed, we can estimate that every one-year increase in age (x1) the mean of annual earnings will increase by 13.35044655. β̂2 = 243.7144645, If age (X1) held fixed, we can estimate that every one hour (x2) of work increase, the mean of......

Words: 714 - Pages: 3

Premium Essay

Multiple Regression

...Project Title: A STATISTICAL ANAYLYSIS OF NBA PLAYER SALARIES USING A MULTIPLE REGRESSION. ABSTRACT Basketball is one of the most popular sports in the world and National Basketball Association (NBA) is the most popular basketball league in the world. The NBA league is based on the United States of America and it consists of 30 teams. The NBA is so popular that the NBA finals are the 2nd most watched televised event in the U.S. after the NFL (National Football League) Super Bowl. Sometimes when we think about NBA players and the enormous amount of money they are making, we become a little jealous. It is well known about how some star players make so much money or are over-paid and yet can hardly form a sentence. The greatest challenge for the board of NBA has been how to harmonize the salaries. Due to this various people have tried to come up with different solutions .Some argue that height ,weight and physical strength play a big role in team winning but this is not the case as some players who are short help their teams win in several occasions. To solve this problem a multiple regression analysis will be utilized to analyze the salary data. A relationship will be established between the salary and performance variables. The other challenge will be choosing the model parameters that will be significant in order to be included in the model that will be developed. This can be solved by arranging the factors affecting an NBA player salary in a decreasing order of......

Words: 1819 - Pages: 8

Premium Essay

Regression Analysis

... | LETTER OF TRANSMITTAL April 12, 2012 Dr. Abul Kalam Azad Associate Professor Department of Marketing University Of Dhaka Subject: Submission of a Report on regression analysis Dear Sir, Here is our term paper on regression analysis that you have assigned us to submit as a partial requirement for the course –“Business Statistics 1” Code no-212.While preparing this term paper; we have taken help from internet, books, class lectures and relevant sources. Though we have tried best yet it may contain some unintentional errors. We hope, this term paper will come up with your expectation. We shall be glad to answer any kind of question related to this term paper and we shall be glad to provide further clarification if needed. Yours faithfully Group: ''Oracles'' Section: B 17thBatch, Department Of Marketing University of Dhaka. ACKNOWLEDGEMENT For the completion of this task, we can’t deserve all praise. There were a lot of people who helped us by providing valuable information, advice and guidance. Course report is an important part of BBA program as one can gather practical knowledge within the short period of time by observing and doing this type of task. In this regard our report has been prepared on ‘regression analyses. At first we would like to thank Almighty .Then to our course teacher for giving us the assignment helping the course as well as for his valuable guidelines. Last but not the least the......

Words: 1445 - Pages: 6

Free Essay

Regression Paper

...Regression Paper Team RES/342 Research and Evaluation Teacher Date The Hypothesis Team C’s hypothesis is that the more years of education one receives the more a person can potentially earn in salary. The team will use the process of linear regression analysis to explain how the information is used and conduct a five-step test to see if the hypothesis proves true or false. Linear Regression Analysis Team C’s purpose of this research paper is to use a linear regression analysis test to determine if a significant linear relationship exists between an independent variable which is X, level or years of education, and a dependent variable Y, salaries earned or potentially earned. “It is used to determine the extent to which there is a linear relationship between a dependent variable and one or more independent variables,” (Statistically Significant Consulting, 2010, para. 1). Learning Team C will use the salary and education levels from the Wages and Wage Earners Data Set collected through access to the e-source link of University of Phoenix. For this test the dependent variable, Y, will represent the salary of the 100 participants and the independent variable, X, will represent the education of the 100 participants. How the Information is used This information will be used in a linear regression test to see if there is enough evidence to reject the null hypothesis that a higher education does not......

Words: 1091 - Pages: 5

Premium Essay

Regression Case

...------------------------------------------------- REYEM AFFAIR Regression Case Quantitative Methods II To ------------------------------------------------- Prof. Arnab Basu On October 21, 2011 By GROUP NO. 5 Bharati vishal (11110) akshay ram (11110) dhanashree vinayak shirodkar (11110) amol devnath kumbhare (11110) ajusal sugathan (11110) arun prabu (11110) ghule nilesh vishnu (11110) mudavath swetha (11110) Raja Simon J (1111052) sagar behera (11110) shreya sethi (11110) swati murarka (11110) Indian Institute Of Management, Bangalore Table of Contents S.No | Particulars | Pages | 1. | Executive Summary | 3-4 | 2. | Understanding of the Problem | 4 | 3. | Model Description | 5-13 | | Model 1Prediction interval Vs Confidence IntervalStep wise Regression: A closer lookTest of Model: Analysis of Results | 5-8 | | | 6 | | | 7 | | | 8 | | Model 2Test of Model: Analysis of Results | 9-13 | | | 11-13 | | Other Models | 13 | 4. | Conclusions and Recommendations | 14 | 5. | Appendix 1. Variables Entered/Removed 2. Model Summary 3. ANOVA 4. Coefficients 5. Residual Statistics | 15 | Executive Summary Reyem Affiar has recently found the below described condominium in Mid-Cambridge that he wants to purchase. Street Address : 236 Ellery Street Last Price : $169000 Area & Area Code : M/9 Bed : 2 Bath : 1 Rooms : 5 Interior : 1040 Condo : $175 Tax : $1121 RC :......

Words: 8503 - Pages: 35