Premium Essay

Ij Ch. 9

In: Science

Submitted By butterfinger95
Words 578
Pages 3
Into the Jungle Chapter 9: In Cold Blood: The Tale of the Icefish

1) How did the fish antifreeze originate? The fish antifreeze originated from an ancestral trypsinogen gene. The team at the University of Illinois came to this conclusion when they found shocking similarities between the antifreeze glycoproteins (AFGPs) and a trypsinogen gene. These similarities were between the AFGP exon and the sequence of the trypsinogen gene, between the 3’ end of the AFGP gene and trypsinogen, as well as between the two introns. All these similarities between the AFGP gene and trypsinogen gene were at least 90 percent identical. Not only that, but it was also found that the trypsinogen gene’s nine base pair segment encoded, by repeated duplication, tripeptide (Thr-Ala-Ala) repeats in the AFGP gene; which are the building blocks of AFGPs (Carroll, 178). Basically, the fish antifreeze originated from a gene that already existed.

2) What is a fossil gene? A fossil gene, or more commonly known as pseudogene, is a gene that is present but is inactive or “abandoned” (Carroll, 179). In the case of the icefish ancestors, the remaining alpha-globin gene is the fossil gene.

3) How do icefish obtain their oxygen? What might happen to icefish if the waters around the Antarctic became warmer? Icefish obtain their oxygen due to their cardiovascular system. Large gills and scaleless skin with large capillaries allow the icefish to “increase [their] absorption of oxygen from the environment” (Carroll, 180). They also have larger hearts and blood volumes to assist them in pumping the blood more efficiently throughout their body. If the waters around the Antarctic became warmer, the icefish would not survive. This is due to the fact that they do not have red blood cells, which allows them to thrive in cold environments and not freeze. The absence of red blood cells also reduces…...

Similar Documents

Free Essay

Revised Simplex Method

...ah(2) , … , ah(m) ], cH will denote the m-tuple cH = (ch(1), ch(2), … , ch(m)), and (aj)H will denote the m-tuple (column vector) (aj)H = (ah(1), ah(2), … , ah(m))T. Here aj is the jth column of A. Proposition. Let H = (h(1), h(2), … , h(m)) be a basic index heading for the basic index set B = {i(1),i(2), … , i(m)} for the LP: Min { c.x | Ax = b, x ≥ 0} . Let AB -1 a j= a′j, AB -1 b = b′, A H -1 a j = a′′j, and AH -1 b = b′′. Then (i) cHAH-1 = cBAB-1 , (ii) the sets of ratios for B and H are equal, i.e., S = { (b′i/a′ij) | a′ij > 0, i ∈ {1, … , m} } = { (b′′i/a′′ij) | a′′ij > 0, i ∈ 1, … , m} }, and (iii) if a′′kj > 0 and (b′′k/a′′kj) = min { (b′′i/a′′ij) | a′′ij > 0, 1, … , m} }, then h(k) leaves H in an iteration of the simplex algorithm Proof.(i). We have that there is a σ ∈ ℘(m) such that h(s(k)) = i(k) for k = 1, … , m. Here σ simply returns the basic heading set to its natural ordering, i.e., AB = AHPσ. In fact, multiplication of AH on the right by the permutation matrix Pσ interchanges the columns of AH so that the kth column of the product AHPσ is the column that occupied the σ(k)th column of AH. The σ(k)th of AH was occupied by ah(σ(k)). However, we have that h(σ(k)) = i(k). So the kth column of the product AHPσ is occupied by ai(k), the kth column of AB. So we have shown that the kth of both AB and AHPσ coincide and thus Revised Simplex Method page 2 A H Ps = [ah(1), ah(2), … , ah(m)]Pσ = [ah(σ(1)), ah(σ(2)), … ,ah(σ(m))] = AB . Now we have that cH Pσ = cB .......

Words: 3270 - Pages: 14

Free Essay

Meaw

...evs k e¨vsK sjv‡`k K wnDg¨v wi‡mv‡m©m wWcvU©‡g›Uvb -1 (wiµyU‡g›U GÛ AvD ‡g DU‡mvwm©s DB Bs) cÖavb Kvhvjq h© XvKv v www.bb.o org.bd www.bb.o org.bd weÁwß bs s-36/2014 ZvwiL t 31/08/20 L 014 evsj jv‡`k e¨vs‡K ÔmnKvix cwiPvjK(‡R K c Rbv‡ij mvBW c‡` wb‡q cÖm‡½| W)Õ qvM evsjv‡`k e¨ e¨vs‡K ÔmnKvi cwiPvjK (‡Rbv‡ij mvBW)Õ c‡` wb‡qv‡Mi D‡ vix m ` D‡Ï‡k¨ MZ 26/04/2013 Zvwi‡L M„nx wjwLZ cixÿv 2 3 nxZ ci Ges cie ‡Z AbywôZ ‡gŠwLK cixÿvq DËxY© cÖv_x©‡`i ga¨ n‡Z wb‡¤œv³ ‡ivj b¤^iavix 102R cÖv_©x‡K 2 ch©v‡q D³ c‡` wb‡qv eZx© c Y© g ¤œ ¤^ Rb 2q qv‡Mi Rb¨ wbe©vw Kiv n‡q | cÖv_x©‡`i ‡ivj b¤^‡ii cv‡k¦© ewY©Z Zvwi‡Li g‡a¨ gnve vcK, wnDg¨vb wi‡mv‡ m wWcvU©‡g vwPZ ‡q‡Q ‡ ¤^ e Li e¨e¯’ wn v‡m© ‡g›U-1, evsjv jv‡`k e¨vsK, cÖa Kvh©vjq( avb feb 6ô Zjv), XvK wi‡cvU© Kivi civgk w`‡q B‡Zvvg‡a¨ D‡jøwLZ cÖv_x©‡`i e gvb I ¯’vqx wVKvbvq Advi cavb (cÖ 6 vKvq U© gk© Z eZ© A ‡jUvi ‡cÖiY Kiv n‡q‡ t cÖ q‡Q µt bs 01) wbe©vwPZ cÖv_x©‡`i ‡ivj b¤^i j ‡h Zvwi‡L L wi‡cvU© Ki‡Z ‡Z n‡e| 09/09/201 14 Zvwi‡Li g‡a a¨ 02) 01244, 02 2714, 02809, 04900 05078, 05115, 05 0, 5190, 080 082, 10178 10330, 10792, 8, 11075, 11 1228, 1135 14980 15032, 15683, 16 50, 0, 6220, 162 230, 16305 17127, 17294, 5, 17894, 18 8165, 18784, 22642 22768, 22969, 23 2, 3122, 232 219, 23235 23306, 23496, 5, 23637, 23 3649, 237 26100 26204, 27848, 29 715, 0, 9556, 296 623, 29936 32376, 33138, 6, 33250, 33 3914, 34173, 35847 35880, 36144, 36 7, 6208, 398 838, 40106 40576, 40702, 6, 42796, 43 3505, 448 838, 45111 45263, 45402, 45 1, 5987, 461......

Words: 481 - Pages: 2

Free Essay

Mayur

...www.examrace.com ·· ..... . ·· ·. . ... . . .. . SOL'VEID PAPER 2013 (Memory .Based) .... :: .. ·... ·. .·... :· : MATHEMATICS 1. If a, p are t!-le roots of ax2 + bx + c 1 then -~·- = 0, 1 13 are the roots of 8. The mean of a· binomial distribution is 5, then its vari;:mce has to be (a) > 5 (b) = 5 =0 a =o (c) < 5 (d) = 25 9. If a is the single A.fyl. between two numbers (c) cx 2 + bx + a =0 a and b and Sis the sum of n A.M.'s between =0 them, then A depends upon 2 (a) ax (b) cx 2 (d) ax - - 2 bx + c bx + bx - c - s 2. The number of real roots of the equation (x - 1)2 + (x - 2)2 + (x - 3)2 o is (a) 1 (b) 2 = (c) 3 3. If (d) None of these s· is the set containing values of x satisfying rX)' - 5[ XJ+ 6 :S 0 , (2, 4) (b) (2, 4j (C) [2, 3] (d) (2, 4) 4. Seven people are seated in a circle. How many relative arrangements are possible? (a) 7! (c) 7p s (b) n, a (c) n, b 1 1 (d) n , , 10. 2< 46 siG1632 ... upto oo equal to (b) .2 (a) Where [X) denotes GIF, then S contains (a) (a) n, a, b 5. (d) - 3 2 (c) - 2 11. The odds in favour of India winning any cricket match is 2 : 3. What is the probability that if India plays 5 matches, it wins exactly 3 of them? (b) 6! (d) 7Ce 5. In how many ways can 4 people be seated on a square table, one on each side? (a)......

Words: 4938 - Pages: 20

Free Essay

Science of Bullshit

...;:::. :~ t.f; ~:J :i~ gJ ,;(' t \j' ~}~ '_ I Levels of culture 11th juror: (rising) 'I beg pardon, in discussing ... 10th juror: (inlerrupting and mimicking) 'I beg pardon. What are you so goddam polite about?' 11th juror: (looking s- raight at the 10th juror) 'For the same reason you're not. t It's the way I was brought up.' From Reginald Rose, Twelve Angry Men .;."" ' , ' , ·· ~.t,:' . '~ ,r ' ?,./ ......~ ~ i "·~:,>~i ;¥ '. .' I.' '=..,. :I....... Cl'~ .~ ';-;X•. .; ~ ::;~·r : ';f1 ~i-.:~ ;,;-" "~fS'::, ':~i , ~ " ;;: ~:~~ ~.~-~ : f ( f' 1-' : ::;'._, :: ::~!'~' • ~. ") "'{.~,:,~fr~;.f~- :: JHfffl t:;t~t~: ie-lD .ti'l~r~~" .~·~': ~ ~, :~··~ ·; ~.':l ;>~~~~ '<}{~ID:.) ~l4) JLu} r;: .bg,((! \ .,; ,:.. · ..·;~\~i':};,' ::ij 1:;-h .f.;t!£ .,i-:::;"} ~.) :i/;.~-:\: .• ~ ':rJ~) ~)>1~J lt tJ( . :-.r~r~~ ',:" " "--.Lt.~·"·1qI)O:· . bl1t~IJi-~b ;;_: ,:, ,"'"'" :'n:,~:.:n;~;:i~' ,. ~. If }.- i~~]~:·::-'nin:~.:' ,iWitl, !ic'q re, ,'1.Q_it;,n~rwv) ;j;,/ , 'ho.qqii2 <5/~jh:::,~,,: ; - ,;'l;jl)(: - , ,?:;-'; . n:J:Ai~r<, ;;':",' Twelve Angry Men is an American theatre piece which became a famous motion picture, starring Henry Fonda. The play was written in 1955'. The -scene consists of the jury room of a 'New York court of law. Twelve jury members. who have never met before have to decide ~,.manimously on the guilt or innocence of a boy from a slum area, accused of murder. The quote abo-ve is from the second and final act when emotions have reached......

Words: 8895 - Pages: 36

Free Essay

Yoyojoe80

...have halved again, to 200 mmHg. Thus, the pressure of DTBP at 125 min will be intermediate between the pressure at 80.0 min (400 mmHg) and that at 160 min (200 mmHg). To obtain an exact answer, first we determine the value of the rate constant from the half-life. k= ln 0.693 0.693 = = 0.00866 min 1 t1/2 80.0 min  PDTBP t  PDTBP 0 =  kt = 0.00866 min 1  125 min = 1.08  PDTBP t = e 1.08 = 0.340  PDTBP 0  PDTBP t = 0.340   PDTBP 0 = 0.340  800 mmHg = 272 mmHg 7B (M) (a) We use partial pressures in place of concentrations in the integrated first-order rate equation. Notice first that more than 30 half-lives have elapsed, and thus the ethylene oxide 30 pressure has declined to at most 0.5 = 9  1010 of its initial value. b g ln P30 P 3600 s = kt = 2.05 104 s 1  30.0 h  = 22.1 30 = e22.1 = 2.4 1010 P0 1h P0 P30 = 2.4  1010  P0 = 2.4  1010  782 mmHg = 1.9  107 mmHg 613 Chapter 14: Chemical Kinetics Pethylene oxide initially 782 mmHg  1.9  107 mmHg (~ 0). Essentially all of the ethylene oxide is converted to CH4 and CO. Since pressure is proportional to moles, the final pressure will be twice the initial pressure (1 mole gas  2 moles gas; 782 mmHg  1564 mmHg). The final pressure will be 1.56  103 mmHg. (b) (D) We first begin by looking for a constant rate, indicative of a zero-order reaction. If the rate is constant, the concentration will decrease by the same......

Words: 21380 - Pages: 86

Premium Essay

Factor Analysis

...certain MBA program must take three required courses in ¯nance, marketing and business policy. Let Y1, Y2 , and Y3 , respectively, represent a student's grades in these courses. The available data consist of the grades of ¯ve students (in a 10-point numerical scale above the passing mark), as shown in Table 14.1. Table 14.1 Student grades Student no. 1 2 3 4 5 Finance, Y1 3 7 10 3 10 Grade in: Marketing, Y2 6 3 9 9 6 Policy, Y3 5 3 8 7 5 °Peter Tryfos, 1997. This version printed: 14-3-2001. c 2 Chapter 14: Factor analysis It has been suggested that these grades are functions of two underlying factors, F1 and F2, tentatively and rather loosely described as quantitative ability and verbal ability, respectively. It is assumed that each Y variable is linearly related to the two factors, as follows: Y1 = ¯10 + ¯11 F1 + ¯ 12 F2 + e1 Y2 = ¯20 + ¯21 F1 + ¯ 22 F2 + e2 Y3 = ¯30 + ¯31 F1 + ¯ 32 F2 + e3 (14:1) The error terms e1, e2, and e3 , serve to indicate that the hypothesized relationships are not exact. In the special vocabulary of factor analysis, the parameters ¯ij are referred to as loadings. For example, ¯12 is called the loading of variable Y1 on factor F2. In this MBA program, ¯nance is highly quantitative, while marketing and policy have a strong qualitative orientation. Quantitative skills should help a student in ¯nance, but not in marketing or policy. Verbal skills should be helpful in marketing or policy but not in ¯nance. In other words, it is......

Words: 6747 - Pages: 27

Free Essay

Agrani Bank Service

...wjwg‡U‡Wi g‡a¨ 15Ð11Ð2007 Zvwi‡L m¤cvw`Z ‡fÛim& GwMÖ‡gÈ ‡gvZv‡eK AMÖYx e¨vs‡Ki mKj m¤c`, `vq, `vex I cvIbv AMÖYx e¨vsK wjwg‡U‡Wi wbKU n¯—vš—wiZ nq| AMÖYx e¨vsK wjwg‡UW Gi †g‡gv‡iÛvg Ae G‡mvwm‡qkb GÛ AvwU©†Kjm Ae G‡mvwm‡qkb Ges m¤cvw`Z ‡fÛim& GwMÖ‡g‡›U cÖ`Ë ¶gZve‡j AMÖYx e¨vsK wjwg‡U‡Wi cwiPvjbv cwil` (Board of Directors) AMÖYx e¨vsK wjwg‡UW Kg©Pvix PvKzix cÖweavbgvjv, 2008 bv‡g wbæiƒc cÖweavbgvjv cÖYqb Kwi‡jb, h_v t cÖ_g Aa¨vq cÖviw¤¢K welqvw` 1| msw¶ß wk‡ivbvgv I cÖ‡qvM t (1) GB cÖweavbgvjv ÔÔAMÖYx e¨vsK wjwg‡UW Kg©Pvix PvKzix cÖweavbgvjv, 2008ÔÔ bv‡g AwfwnZ nB‡e Ges 1 jv Rvbyqvix,2010 nB‡Z Kvh©Ki nB‡e| Z‡e kZ© _v‡K †h, (K) †h mKj Kg©Pvix eZ©gv‡b Aemi cÖ¯‘wZg–jK QywU‡Z iwnqv‡Qb Ges 31-12-2009 Bs ch©š@ Aemi cÖ¯‘wZg–jK QywU‡Z hvB‡eb Zuvnviv GB cÖweavbgvjvi AvIZvf‚³ nB‡eb bv Ges (L) AMÖYx e¨vsK wjwg‡UW - G 2008 mv‡j †h mKj Kg©Pvix mivmwi wb‡qvMcÖvß nBqv‡Qb, Zvnv‡`i †¶‡Î GB cÖweavbgvjv 1 jv RyjvB,2008 nB‡Z Kvh©Ki nBqv‡Q ewjqv MY¨ nB‡e | (2) GB cÖweavbgvjv we‡`‡ki kvLv/Awdmg~‡n ¯’vbxqfv‡e wb‡qvwRZ Kg©Pvix e¨wZ‡i‡K AMÖYx e¨vsK wjwg‡U‡Wi mKj ¯’vqx Kg©©Pvixi ‡¶‡Î cÖ‡hvR¨ nB‡e, Z‡e †cÖl‡Y wb‡qvwRZ A_ev LÛKvjxb ev mvgwqKfv‡e wb‡qvwRZ Kg©Pvixmn Pyw³wfwËK wb‡qvwRZ Kg©Pvix‡`i †¶‡Î, GB cÖweavbgvjvi †Kvb wKQz cÖ‡hvR¨ ewjqv Zuvnv‡`i PvKzixi k‡Z© ¯•ó Dwj­wLZ bv _vwK‡j, Dnv cÖ‡hvR¨ nB‡e bv| (3) MYcÖRvZš—x evsjv‡`k miKvi Ges AMÖYx e¨vsK wjwg‡UW-Gi g‡a¨ m¤•vw`Z †fÛim& Pzw³i 5bs Aby‡”Q‡` ewY©Z kZ©vbymv‡i GB cÖweavbgvjv......

Words: 16457 - Pages: 66

Premium Essay

Link Research

...this is the first qr (Srl no. 1)used in a st add allotted, write below the exact st add allotted Allotted St add: ____________________________________________________________this enables to have a control on intrs starting from the given st add in random st add ATPs) SPEAK TO HOUSEWIFE AGED BETWEEN 25-45 YEARS: Namaste. I am from Millward Brown. We are one of the largest and most respectful market research organisations. We conduct research studies in various product fields. We are currently doing a study on certain household products. Could you spare some time to answer a few questions? Thank you. ueLrs ------------! eSa feyoMZ czkmu ls vk;k gw¡A ge yksx ,d fuft ekdsZV fjlpZ laLFkk gSa] tks vyx vyx mRiknksa ij losz djrs gSaA vktdy ge yksx ,sls gh dqN ?kjsyw mRiknksa ij losZ dj jgs gSaA D;k vki dqN lokyksa dk tokc nsus ds fy;s le; nsxs ] a /kU;oknA RQ1a. Do you or does any member of your household work for any of these organizations READ OUT? Card 5 D;k vki ;k vkids ?kj dk dksbZ Hkh lnL; buesa ls fdlh Hkh laLFkk esa dke djrk gS \ Pharmaceutical company QkekZL;qfVdy dEiuh 1 Advertising agency foKkiu ,tsalh 2 Market research agency ekdsZV fjlpZ ,tsalh 3 Manufacturer/Stockist /Retailer of Branded Atta/Chakki Atta/Wheat CONTINUE TERMINATE 4 czk.MsM vkVk @pDdh vkVk @xsgwW ds a fuekZrk@ LVkWfdLV @fjVsyj Bank 5 None of these RQ1b cSad buesa ls dksbZ ugha 6 CONTINUE (511) Have you been interviewed in any market research Survey like this in past 6 months? D;k......

Words: 9093 - Pages: 37

Free Essay

Beduin Konna

...AviI eo GKUv cwiPq Av‡Q,Õ ejj †m, Mwe©Z fw½‡Z wb‡Ri ey‡K AvOyj †VKvj| ÔAvwg †e`yCbKb¨v, wdwjw¯—wb|Õ ï‡b fvj jvMj ivbvi| R‡g DVj Mí| 3 Gfv‡eB ïi“| ci¯úi‡K fvj jvMj I‡`i| Zvici GK mgq g‡b n‡jv cwiPq µgk NwbôZvi w`‡K G‡Mv‡”Q| †mB m~‡ÎB myivBqv dviw`b m¤ú‡K© A‡bK K_v Rvbv n‡jv ivbvi| Zvi GKUv †ivgnl©K AZxZ Av‡Q| †jevbb mxgv‡š—i Kv‡Q †e`yCb‡`i GKUv DØv¯‘ K¨v‡¤ú wQj Zviv| BRiv‡qwj †c−b †_‡K †evgv †djv n‡qwQj †mLv‡b| ZLb Zvi eqm gvÎ cuvP eQi| IB b„ksm nvgjvq Zvi gv-evev, fvB-†evb I Ab¨vb¨ AvZ¥xq-¯^Rb mevB gviv †M‡Q| Ávb †divi ci †`Lj †m-I gvivZ¥Kfv‡e AvnZ, KvQvKvwQ GKUv wLªðvb nvmcvZv‡j wb‡q Avmv n‡q‡Q Zv‡K| cy‡ivcywi m&y¯’ n‡q DV‡Z QÕgvm †j‡M †Mj myivBqvi| wKš‘ †KD wb‡Z bv Avmvq nvmcvZvj KZ©„c¶ GKUv wgkbvwi ¯‹z‡j cvwV‡q w`j Zv‡K| AvVv‡iv eQi eqm ch©š— †mB ¯‹y‡j †jLvcov I Mvb-evRbv wk‡L‡Q myivBqv dviw`b| Zvici ILvb †_‡K IB wgkbvwi‡`i cwiPvwjZ jÛ‡bi GKUv K‡j‡R cvwV‡q †`Iqv n‡q‡Q Zv‡K| cvidwg©s AvU©m-G Abvm© K‡i‡Q †m| eqm PweŸk eQi cy‡iv n‡Z wgkbvwi K‡jR †Q‡o KwVb, A‡Pbv, AwbwðZ `ywbqvq †ewi‡q Avm‡Z n‡q‡Q myivBqv‡K| Bs‡iwR, wneª“ I Aviex fvlv fvjB wk‡L‡Q †m| Zvici †ek wKQyw`b GLv‡b-†mLv‡b PvKwi wb‡q‡Q Avi †Q‡o‡Q myivBqv| Ii wk‡íi †P‡q A‡bK †ewk AvKl©Yxq †j‡M‡Q gvby‡li Kv‡Q Ii iƒc-†mŠ›`h©| ¸‡Yi K`i bv †c‡q Nyi‡Z Nyi‡Z †Kv_vI mywe‡a Ki‡Z bv †c‡i Ae‡k‡l jÛb wnjU‡bi AwfRvZ †i‡¯—viuv †iW Kv‡c©‡Ui wbqwgZ MvwqKv wn‡m‡e PvKwi wb‡q‡Q| wKQyw`‡bi g‡a¨B I‡`i cvi¯úwiK AvKl©Y GZB ZxeªZv †cj †h, GKw`b †`Lv bv n‡j Aw¯’i n‡q I‡V gb, Lvwj g‡b nq ey‡Ki wfZiUv| †ek K‡qKevi PzwcPzwc ivbvi d¬¨v‡U G‡m‡Q......

Words: 61622 - Pages: 247

Free Essay

Six Agenda of Bangladesh

...paths? Edge-disjoint paths: The maximum number of paths from v to w, no two of which have an edge in common such path are called edge-disjoint paths. For this figure, the edge-disjoint paths is E1 = {ps, qs, ty, tz} and E2 = {uw, xw, yw, zw}. 1) Matrix representation of a graph 2) The eight circle problem 3) Six people at a party. Discuss the application domain of Explain that any simple graph with in vertices has ……… edges is connected. Prove that the ………. of spanning trees at …….. Brooks algorithm. Matrix Representation of a graph? Answer: If G is a graph with vertices labelled {1, 2, ….. , n} its adjacent matrix A is the nxn matrix whose ij-th entry is the number of edges joining vertex I and vertex j. in addition, the edges are labelled {1, 2, ….., m} its incident matrix M is the nxm matrix whose ij-th entry is 1 if vertex i is incident to edge j, and o otherwise. The Eight Circles Problem? Answer: Place the letters A, B, C, D, E, F, G, H into the eight circles in figure, in such a way that letter is adjacent to a letter is next to it in the alphabet. There are 8! = 40320 ways of placing eight letters into eight circles. The move systematic approach – 1) The easiest letters to place are A and H because each has only one letter to which it cannot be adjacent. 2) The hardest circles to fill are those in the middle as each is adjacent to others. This suggest that we place A and H is in the middle circles. If we place A to the left of H,......

Words: 4817 - Pages: 20

Free Essay

Euler-Lagrange Partial Di Erential Equations

...locally (in open subsets of E) the pullback via π ∗ of a form on the base B. Our computations will frequently require the following multi-index notation. If (ω1 , . . . , ωn ) is an ordered basis for a vector space V , then corresponding to a multi-index I = (i1 , . . . , ik ) is the k-vector ω I = ω i1 ∧ · · · ∧ ω ik ∈ k (V ), and for the complete multi-index we simply define ω = ω1 ∧ · · · ∧ ωn . Letting (e1 , . . . , en) be a dual basis for V ∗ , we also define the (n − k)-vector ω(I) = eI ω = e ik (eik−1 · · · (ei1 ω) · · · ). This ω(I) is, up to sign, just ωIc , where Ic is a multi-index complementary to I. For the most frequently occurring cases k = 1, 2 we have the formulae (with “hats” ˆ indicating omission of a factor) ω(i) ω(ij) = (−1)i−1 ω1 ∧ · · · ∧ ωi ∧ · · · ∧ ωn , ˆ = (−1)i+j−1 ω1 ∧ · · · ∧ ωi ∧ · · · ∧ ωj ∧ · · · ∧ ωn ˆ ˆ = −ω(ji) , for i < j, ωi ∧ ω(j) i δj ω, i i δk ω(j) − δj ω(k). and the identities = = ωi ∧ ω(jk) We will often, but not always, use without comment the convention of summing over repeated indices. Always, n ≥ 2.2 2 For the case n = 1, an analogous geometric approach to the calculus of variations for curves may be found in [Gri83]. xiv INTRODUCTION Chapter 1 Lagrangians and Poincar´-Cartan Forms e In this chapter, we will construct and illustrate our basic objects of study. The geometric setting that one uses for studying Lagrangian functionals subject to contact transformations is a contact manifold, and......

Words: 82432 - Pages: 330

Free Essay

F34100110

...pengamatan tekstur kulit hasil bating (kelenturan dan ketahanan tekan) dengan scoring skala 1-10. Analisis Data Statistik Rancangan percobaan yang digunakan untuk analisis data hasil bating kulit ikan tuna adalah Rancangan Acak Lengkap (RAL) Faktorial 3x3 dengan dua kali ulangan. Faktor yang dicobakan adalah konsentrasi (A) dengan taraf 0,5%, 1%, dan 1,5%, serta waktu bating (B) dengan taraf 0,5, 1, dan 1,5 jam. Model matematikanya adalah sebagai berikut: Yijk = μ + αi + βj + (αβ)ij + εk(ij) Keterangan: Yijk : nilai pengamatan pada faktor konsentrasi bating agent taraf ke-i faktor waktu bating taraf ke-j dan ulangan ke-k μ : nilai rata-rata yang sesungguhnya (rata-rata populasi) αi : pengaruh aditif taraf ke-i dari faktor konsentrasi bating agent βj : pengaruh aditif taraf ke-j dari faktor waktu bating (αβ)ij : pengaruh aditif taraf ke-i dari faktor konsentrasi bating agent dan taraf ke-j dari faktor faktor waktu bating εk(ij) : galat (error) dari satuan percobaan ke-k yang memperoleh kombinasi perlakuan ij. Variabel yang diperoleh dari penelitian ini diuji ragam (anova). Apabila ada pengaruh signifikan dari setiap perlakuan, maka dilakukan uji lanjut (Duncan). Analisis statistik ini dilakukan dengan menggunakan software SPSS 16.00. HASIL DAN PEMBAHASAN Karakteristik Kulit Ikan Tuna Ikan tuna merupakan salah satu hewan yang hidup di lautan yang beberapa spesiesnya dijadikan sebagai ikan tangkap bernilai tinggi. Ikan tuna termasuk genus Scombrid fishes, famili Scombridae,......

Words: 6581 - Pages: 27

Free Essay

Design and Analyses of Experiments

.... . . . 8.7.2. Quadratic Regression . . . . . . . . . . . . . . . . . . 8.7.3. Comments . . . . . . . . . . . . . . . . . . . . . . . A Real Experiment—Bean-Soaking Experiment . . . . . . . . 8.8.1. Checklist . . . . . . . . . . . . . . . . . . . . . . . . 8.8.2. One-Way Analysis of Variance and Multiple Comparisons . . . . . . . . . . . . . . . 8.8.3. Regression Analysis . . . . . . . . . . . . . . . . . . Using SAS Software . . . . . . . . . . . . . . . . . . . . . . . Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 248 248 248 249 251 255 255 257 258 258 260 261 262 262 264 267 268 273 9. Analysis of Covariance 9.1. 9.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.1. Checking Model Assumptions and Equality of Slopes . . 9.2.2. Model Extensions . . . . . . . . . . . . . . . . . . . . . Least Squares Estimates . . . . . . . . . . . . . . . . . . . . . . 9.3.1. Normal Equations (Optional) . . . . . . . . . . . . . . . 9.3.2. Least Squares Estimates and Adjusted Treatment Means Analysis of Covariance . . . . . . . . . . . . . . . . . . . . . . Treatment Contrasts and Confidence Intervals . . . . . . . . . . 9.5.1. Individual Confidence Intervals . . . . . . . . . . . . . 9.5.2. Multiple Comparisons . . . . . . . . . . . . . . . . ....

Words: 308264 - Pages: 1234

Free Essay

Math Exercises

...B ( −2;5 ) và ®Ønh C n»m trªn Daukhacha.toan@gmail.com 0−2 - Trang 1 - www.MATHVN.com www.MATHVN.com Chuyên đề : PHƯƠNG TRÌNH ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN ®−êng th¼ng x − 4 = 0 , vµ träng t©m G cña tam gi¸c n»m trªn ®−êng th¼ng 2 x − 3 y + 6 = 0 . TÝnh diÖn tÝch tam gi¸c ABC. Giải  AB = 5 Tọa độ C có dạng : C ( 4;a ) , AB = ( −3; 4 ) ⇒  ( AB ) : x − 1 = y − 1 ⇔ 4 x + 3 y − 7 = 0 −3 4  x + xB + xC 1− 2 + 4   xG = A xG = =1     3 3 Theo tính chất trọng tâm ;  ⇔ y A + yB + yC y =  y = 1+ 5 + a = a + 6 G  G  3 3 3   a+6 Do G nằm trên 2 x − 3 y + 6 = 0 , cho nên : ⇒ 2.1 − 3   + 6 = 0 ⇔ a = 2.  3  4.4 + 3.2 − 7 1 1 15 Vậy M ( 4; 2 ) và d ( C , AB ) = = 3 ⇒ S ABC = AB.d ( C , AB ) = 5.3 = (đvdt) 2 2 2 16 + 9 BT4. Trong mÆt ph¼ng täa ®é Oxy cho tam gi¸c ABC, víi A(2;−1) , B(1;− 2) , träng t©m G cña tam gi¸c n»m trªn ®−êng th¼ng d : x + y − 2 = 0 . T×m täa ®é ®Ønh C biÕt diÖn tÝch tam gi¸c ABC 27 . b»ng 2 Giải. A d M C B 3 1 Ta có : M là trung điểm của AB thì M  ; −  . Gọi C ( a; b ) , theo tính chất trọng tam tam giác 2 2 a+3   xG = 3  : y = b −3  G 3  a+3 b−3 Do G nằm trên d : + − 2 = 0 ⇔ a + b = 6 (1) 3 3 3a − b − 5 x − 2 y −1 Ta có : AB = (1;3) ⇒ ( AB ) : = ⇔ 3x − y − 5 = 0 ⇔ h ( C , AB ) = 1 3 10 Daukhacha.toan@gmail.com - Trang 2 -www.MATHVN.com www.MATHVN.com Từ giả thiết : S ABC = Chuyên đề : PHƯƠNG TRÌNH ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN 2a − b − 5 2a − b − 5 27 1 1 AB.h ( C , AB ) = 10. = = 2 2 2 2 10 ...

Words: 17248 - Pages: 69

Free Essay

Ijm Corporation

...optimistic during the briefing yesterday. This ties-in with our recent channel checks which indicated that there is a high probability that it will be inked soon. Signing of the CA would pave the way for RM4bn worth of new orders and the gradual recovery of IJM Corp’s construction margins. We expect the stock to re-rate strongly on this news potentially. In our revised RNAV, we also update IJM Land’s market capitalisation which makes up 22% of RNAV. Figure 6: RNAV Concessions Kaseh Highway (IRR:9%, 12% discount rate) Besraya (DCF 14% IRR, 9.6% discount rate) New Pantai Expressway (9% IRR, 9.6% discount rate) Kuantan Port (9.6% WACC) Kemaman Port (9.6% WACC) Swarna, Andhra Pradesh (IRR 13%, 11.6% discount rate) Rewa, Madya Pradesh (IRR 13%, 11.6% discount rate) Trichy, Tamil Nadu (IRR 13.6%, 11.6% discount rate) Jaipur-Mahua, Rajashtan (IRR 13.6%, 11.6% discount rate) Gautami, Andra Pradesh (IRR 13.6%, 11.6% discount rate) Western Access Tollway, Buenos Aires West Coast Expressway (WCE, 60-year, 9% WACC) Total value of concessions Other divisions IJM Land Metech Group IJM Plantations Grupo Concessionario OESTE Kumpulan Europlus Total value Market Market price (RM) cap (RM) 2.49 3,456.6 0.40 16.2 3.58 2,870.1 1.57 125.6 1.14 541.8 IJM's stake 50% 100% 100% 100% 39% 76% 100% 50% 100% 20% 20% 20% Value (RM'm) 175.1 1,086.1 1,239.0 1,037.0 363.9 177.5 232.4 135.1 273.9 70.6 181.6 208.4 5,180.6 Value (RM m) 2,354.0 3.3 1,581.4 25.2 121.9 4,085.8 IJM's Stake 68.1% 20.1% 55.1%......

Words: 7122 - Pages: 29