Premium Essay

In: Science

Submitted By flhorstm

Words 854

Pages 4

Words 854

Pages 4

Survey Physical Science 09/09/2014

Abstract

This experiment helped validate the law of conservation of momentum. The test was done by conducting two experiments with car A and car B, car A’s mass being known and car B’s mass unknown. Experiment A was done by sticking the cars in the center of the track and setting off the puncher then recording the car velocity. Experiment B was done by placing car B in front of the second photogate and car A at the start of the track, again the trigger of car A was set off and it collided with car B and the car velocity was recorded. Our results show momentum and kinematics methods show highly accurate results.

Introduction

Newton’s 3rd Law states that for every action there is an equal and opposite reaction. There were two experiments conducted in order to validate the law of momentum conservation. This law states that when there is a collision of two objects the total momentum of the two before the collision should be equal to the total momentum of the two objects after the impact.

Materials * Car track with slots * 2 rolling cars * 2 Photogates * Weights * Data Acquisition Board * Computer with measurement software * 2 picket fences * Ruler * Balance scale

Procedure

In order to perform the experiment the car track and balance scale were checked in order to make sure they were well-adjusted so that the results were accurate. Next car A’s mass was recorded without any extras on it except for the picket fence. Following this an extra mass was measured alone. This extra mass was later placed on top of car A before the experiments were performed. Car B’s mass was unknown along with the extra mass. The computer software measurement program was then opened and the Photogates were slid onto the track and plugged into the...

Free Essay

...Momentum and Energy in 2D Name__________________________________________ Date ________ Explosions: Conservation of Momentum: Note: If particles are not emitted at 900 Then must use Law of Sines: P1 / sin(1800-((1 + (2)) = P2 / sin(3 = P3 / sin(2 Or Law of Cosines P32 = P22 + P12 - 2P1P2cos(2 P22 = P32 + P12 - 2P3P1cos(3 P12 = P32 + P22 - 2P3P2cos(1800-((1 + (2)) Collisions: Conservation of Momentum: Examples: An unstable nucleus of mass 17 x 10-27 kg, initially at rest, disintegrates into three particles. One of the particles, of mass 5.0 x 10-27 kg, moves along the positive y-axis with a speed of 6.0 x 106 m/s. Another particle of mass 8.4 x 10-27 kg, moves along the positive x-axis with a speed of 4.0 x 106 m/s. Determine the third particle’s speed and direction of motion. (Assume that mass is conserved) Write down what you know mnucl = 17 x 10-27 kg m1 = 5.0 x 10-27 kg m2 = 8.4 x 10-27 kg m3 = mnucl – (m1 + m2) = 17 x 10-27 kg – (5.0 x 10-27 kg + 8.4 x 10-27 kg) = 3.6 x 10-27 kg vnuci = 0 m/s v1 = 6.0 x 106 m/s @ y-axis v2 = 4.0 x 106 m/s @ x-axis v3 = ? Draw a vector diagram of the momentum Solve for the momentum of the third particle and then find its velocity Right angled triangle so use Pythagorean Theorem P12 + P22 = P32 ......

Words: 676 - Pages: 3

Free Essay

...My definition of momentum is Tenacity, force, and admiration. My current job is not secure. Despite, the fact that I have been working in broadcast news as a video editor for the past eleven years, receiving my masters in Media Design can start developing my strategy for career change. I have been searching for ways to maximize my talent and skill set to keep me current with technology. Technology changes so rapidly that if you don't keep up with it, it will pass you by. In my current career you can edit on the same editing software for many years, while there are newer versions and updates available, but your company with not provide them to keep their cost down. So when you get to that point you have to ask yourself stay and move forward with current times. When you get to the point of losing you competitive advantage it’s time for higher learner. A fresh new look at you career and the possibility for change. Continuing my education will keep me marketable, obtainable and in high demand. I am responsible for my own learning. I am responsible for obtaining the skill set to obtain the pay scale I truly deserve. No one is more responsible for my professional development, only me. I want to effective in my profession. I want to be on the for front of all technology. I have finally accepted that change is constant; change is receiving my Master’s in Media Design from Full Sail...

Words: 252 - Pages: 2

Free Essay

...P A R T I Discovering Momentum 1 1 The Power of Momentum Where’s the Impetus? Momentum. Most businesses get it at some point: the impression that everything they undertake succeeds effortlessly, as if they’re being carried along by a tailwind that increases their efficiency and propels them on to exceptional growth.1 Some hold on to it. Most don’t. Slowly, imperceptibly, the tailwind turns around and the momentum disappears, without anyone quite realizing what has happened. The company is still growing, but not as strongly as before, not as efficiently. Everyone’s maxing out, but it seems like there’s molasses in the works. Sound familiar? Sooner or later, it hits you in the face. Imagine you are meeting up with a senior analyst whose opinion counts with some of your company’s biggest investors. You think you’re on safe ground—after all, your company is doing better than the competition. But the analyst is in full gimlet-eyed, illusion-killing mode. “That’s nothing to crow about,” she says. “Yeah, you’ve got reasonable growth, but it’s nothing exceptional. You’re a safe bet, nothing more. Okay, I might tell my mom to buy, but 3 The Momentum Effect then she’s happy with inflation plus one. The way we see it, you’re really grinding it out. We reckon the strain’s getting harder, too. There’s no impetus—no momentum.” Words like that can really take the gloss off a day. The next time you gather your team, you don’t congratulate them on beating their......

Words: 104474 - Pages: 418

Premium Essay

...Collisions and Conservation of Momentum Go to http://phet.colorado.edu/en/simulation/collision-lab and click on Run Now. 1. In the green box on the right side of the screen, select the following settings: 1 dimension, velocity vectors ON, momentum vectors ON, reflecting borders ON, momenta diagram ON, elasticity 0%. Look at the red and green balls on the screen and the vectors that represent their motion. a. Which ball has the greater velocity? The red ball has the greater velocity b. Which has the greater momentum? The green ball has more momentum 2. Explain why the green ball has more momentum but less velocity than the red ball (HINT: what is the definition of momentum?). The green ball has more momentum and less velocity because momentum depends solely on mass and velocity. Momentum = Mass(Velocity) Thus, since the green ball has a greater mass than the red ball, the green ball’s mass times its velocity is more than the red ball’s mass times its velocity. 3. Push “play” and let the balls collide. After they collide and you see the vectors change, click “pause”. Click “rewind” and watch the momenta box during the collision. Watch it more than once if needed by using “play”, “rewind”, and “pause”. Zoom in on the vectors in the momenta box with the control on the right of the box to make it easier to see if necessary. a. What happens to the momentum of the red ball after the collision? The momentum of the red ball......

Words: 866 - Pages: 4

Free Essay

...Conservation of Momentum Partial Lab Report Results Summary Elastic Collision Initial Momentum = .414 N | Initial Momentum = 0 N | Initial Kinetic Energy = .084 J | Initial KE = 0 J | V1’ = .0596 m/s | V2’ = .462 m/s | Final Momentum = .061 N | Final Momentum = .354 N | Final KE = .00182 J | Final KE = 0.082 J | Inelastic Collision Initial Momentum = n/a | Initial Momentum = n/a | Initial Kinetic Energy = n/a | Initial KE = n/a | V1’ = n/a | V2’ = n/a | Final Momentum = n/a | Final Momentum = n/a | Final KE = n/a | Final KE = n/a | Discussion For the first part of our lab we were able to successfully show that both kinetic energy and momentum were conserved during the collision. As stated in the lab procedure, we kept one mass heavier than the other and made the heavier object collide with the lighter object at rest. Looking back, there wasn’t too much difference between the sizes of the mass. There was only a 300 gram difference in the system and that may have helped in keeping the collision elastic. The speed was recorded as .404 m/s and that also may have helped in causing the object at rest to bounce off the moving object. We were not able to complete the inelastic collision part of the lab because we were not able to make the objects stick together. We were not sure if the plane the objects were set on was level and this may have caused the objects to keep bouncing away from each other. We also kept the weight and velocity (roughly) the......

Words: 366 - Pages: 2

Free Essay

...[Document subtitle] March 29, 2016 Engineering Physics 150 March 29, 2016 Engineering Physics 150 Objectives: The objectives of this laboratory experiment is to investigate the velocities and momentm of two carts before and after various types of collisions. Theory: * When objects collide and assuming there are no external forces are acting on the colliding objects, the principle of the conservation of momentum always holds. * For a two-object collision, momentum conservation is stated mathematically by the equation: * PTotali =PTotalf * m1v1i+m2v2i=m1v1f+m2v2f * When working with a complete inelastic collision, the two objects stick together after the collision, and the momentum conservation equation becomes: * PTotali =PTotalf * m1v1i+m2v2i=(m1+m2)vf * During this experiment, photogates will measure the motion of two carts before and after elastic collision. The cart masses can be measured by using a simple mass scale. * Then, total momentum of the two carts before collision will be compared to the total momentum of the two carts after collision. Equipment: 850 Universal | Dynamic Track | Two dynamic carts | Two picket fences | Mounting brackets | Mass Balance | Mass Bar | Two Photogates | Data: Part A – Elastic Collision with approx. equal masses: Trial | V1 i (m/s) | V2 i (m/s) | V1 f (m/s) | V2 f (m/s) | 1 | .310 | 0 | 0 | .287 | 2 | .468 | 0 | 0 | .439 | 3 | .486 | 0 | 0 | .435 | 4 |......

Words: 1438 - Pages: 6

Premium Essay

...No. Information on Every Subject 1. Unit Name: Physics I 2. Code: FHSP1014 3. Classification: Major 4. Credit Value: 4 5. Trimester/Year Offered: 1/1 6. Pre-requisite (if any): No 7. Mode of Delivery: Lecture, Tutorial, Practical 8. Assessment System and Breakdown of Marks: Continuous assessment: 50% - Theoretical Assessment (Tests/Quizzes/Case Studies) (30%) - Practical Assessment (Lab reports/Lab tests) (20%) Final Examination 9. 10. 50% Academic Staff Teaching Unit: Objective of Unit: The aims of this course are to enable students to: • appreciate the important role of physics in biology. • elucidate the basic principles in introductory physics enveloping mechanics, motion, properties of matter and heat. • resolve and interpret quantitative and qualitative problems in an analytical manner. • acquire an overall perspective of the inter-relationship between the various topics covered and their applications to the real world. • acquire laboratory skills including the proper handling and use of laboratory apparatus and materials. 11. Learning Outcome of Unit: At the end of the course, students will be able to: 1. Identify and practice the use of units and dimensional analysis, uncertainty significant figures and vectors analysis. 2. Apply and solve problems related to translational and rotational kinematics and dynamics in one and two dimensions. 3. Apply and solve problems related to......

Words: 765 - Pages: 4

Free Essay

...started and ended were equivalent - indicating that there was conservation of speed, in addition to the complete transfer of velocity. However, in the different-mass elastic collisions, the transfer of the speed of the cart was not complete, but instead, the lighter cart moved quicker than the heavier cart. This shows us that although force may be the same, the transfer of momentum shows us why the lighter cart moves more quickly than the slower. Throughout our previous unit, we described the constant velocity of objects in motion. That laid the basis for this next unit, where we will be studying why and how the object moves the way it does, specifically the "push" or "pull" of force. The heavier cart in a same-direction elastic collision seems to push the lighter cart, which causes an increase in speed for the lighter cart. Although we may have brushed on the surface of movement, this unit will pave the path for further investigation on velocity as well as momentum. According to today's lab, it is possible to measure the mass of the carts and then multiple the mass by the velocity to determine momentum. These two things will be related to almost everything that we will be doing in physics, as how can we study how things move if we don't know how they're...

Words: 279 - Pages: 2

Premium Essay

...the net force on an object is equal to the rate of change (that is, the derivative) of its linear momentum pin an inertial reference frame: The second law can also be stated in terms of an object's acceleration. Since the law is valid only for constant-mass systems,[16][17][18] the mass can be taken outside the differentiation operator by the constant factor rule in differentiation. Thus, where F is the net force applied, m is the mass of the body, and a is the body's acceleration. Thus, the net force applied to a body produces a proportional acceleration. In other words, if a body is accelerating, then there is a force on it. Consistent with the first law, the time derivative of the momentum is non-zero when the momentum changes direction, even if there is no change in its magnitude; such is the case with uniform circular motion. The relationship also implies the conservation of momentum: when the net force on the body is zero, the momentum of the body is constant. Any net force is equal to the rate of change of the momentum. Any mass that is gained or lost by the system will cause a change in momentum that is not the result of an external force. A different equation is necessary for variable-mass systems (seebelow). Newton's second law requires modification if the effects of special relativity are to be taken into account, because at high speeds the approximation that momentum is the product of rest mass and velocity is not accurate. Isang tao, munting taong......

Words: 1225 - Pages: 5

Free Essay

...Introduction When an object collides with another, momentum is conserved, but kinetic energy is not. This experiment was designed to find if the coefficient of restitution, e, changes for high-velocity collisions. At low velocities colliding objects will tend to maintain their shape, size and elasticity, so e is likely to be constant over a range. However, at high velocities colliding objects may change their physical properties and therefore a change (probably a reduction) in e may be observed. A small reduction in e was observed, but this was probably accounted for by air resistance and not a change in the material. Theory When a collision occurs, total momentum is conserved, but kinetic energy is not. When a ball, for example, bounces off the floor, it loses a little momentum to the Earth so the total momentum of the system is unchanged. Its KE, given by the formula [pic], assuming it was dropped from rest, will reduce and it will bounce to a height lower than its original height, as shown in diagram 1: Diagram 1: ‘H’ is drop height and ‘h’ is bounce height. The coefficient of restitution is the ratio of the difference in the initial speed and the final speed: (i) is the general formula for e, (ii) is when distances are measured on a drop (one object is stationary), and (iii) is when velocities are measured and one of the objects is stationary. Equation (ii) will be used here. Method Apparatus: Rubber ball, camera,......

Words: 687 - Pages: 3

Premium Essay

...than everyday viewers and fans realize. Physics fuels every aspect of the game of football and is evident in the collisions that take place on every play. Watching a game of football can be a great learning tool to anyone interested in better understanding the laws of physics. Many great examples are provided on every snap. Mass, force, momentum, velocity and torque all play significant roles in the tackling action performed by players and the better you understand these terms the better you can begin to understand the game itself (Gay). Most of what football players and coaches know about tackling is more instinctive than anything. They understand more about the physics of the process more than they realize. Force, mass, acceleration, momentum, torque, velocity, inertia and center of mass are important terms that become relevant when discussing the physics of tackling in football (Gay). Acceleration is the rate of change of velocity in a certain period of time. Force in football can be described as the influence that one player has on another while causing him to accelerate. The amount of substance an object is made up of is the mass. Momentum comes as the result of the product of the mass of a moving object and its velocity. Inertia is the resistance of a moving object to a change in speed or direction, and also the resistance of a stationary object to being moved. Torque is a force that produces a twisting rotation motion. The speed an object travels over a distance......

Words: 1298 - Pages: 6

Premium Essay

...No. Information on Every Subject 1. Unit Name: Physics I 2. Code: FHSP1014 3. Classification: Major 4. Credit Value: 4 5. Trimester/Year Offered: 1/1 6. Pre-requisite (if any): No 7. Mode of Delivery: Lecture, Tutorial, Practical 8. Assessment System and Breakdown of Marks: Continuous assessment: 50% - Theoretical Assessment (Tests/Quizzes/Case Studies) (30%) - Practical Assessment (Lab reports/Lab tests) (20%) Final Examination 9. 10. 50% Academic Staff Teaching Unit: Objective of Unit: The aims of this course are to enable students to: • appreciate the important role of physics in biology. • elucidate the basic principles in introductory physics enveloping mechanics, motion, properties of matter and heat. • resolve and interpret quantitative and qualitative problems in an analytical manner. • acquire an overall perspective of the inter-relationship between the various topics covered and their applications to the real world. • acquire laboratory skills including the proper handling and use of laboratory apparatus and materials. 11. Learning Outcome of Unit: At the end of the course, students will be able to: 1. Identify and practice the use of units and dimensional analysis, uncertainty significant figures and vectors analysis. 2. Apply and solve problems related to translational and rotational kinematics and dynamics in one and two dimensions. 3. Apply and solve problems related to......

Words: 765 - Pages: 4

Free Essay

...디테기CE의 블로그 세상 DetegiCE.kro.kr General Physics 1~50 1. 변위 Displacement ▶ 물체의 변위 는 위치의 변화로 다음과 같이 정의된다. 는 물체의 처음 위치, 는 나중 위치의 좌표이다. (첨자 와 는 각각 처음과 나중을 나타낸다.) SI단위 : 미터 (m) 2. 속력 Speed ▶ 주어진 시간 간격동안 물체의 평균 속력(average speed)은 전체 움직인 거리를 전체 걸 린 시간으로 나눈 것이다. 경로거리 평균속력 경과시간 SI단위 : 미터/초 (m/s) 3. 평균속도 Average Velocity ▶ 시간 간격 동안 평균 속도 는 변위 를 로 나눈 것이다. ≡ SI단위 : 미터/초 (m/s) 4. 순간 속도 Instantaneous Velocity ▶ 순간 속도 는 평균 속도에서 시간 간격 를 무한히 작게 가져갈 때 얻어지는 극한 값이다., lim SI단위 : 미터/초 (m/s) 5. 평균 가속도 Average Acceleration ▶ 시간 간격 동안의 평균 가속도 는 속도의 변화 를 로 나눈 값이다. ≡ SI단위 : 미터/제곱초 ( ) 6. 순간 가속도 Instantaneous Acceleration ▶ 순간 가속도 는 시간 간격 가 영에 가까워지는 평균 가속도의 극한이다. lim → SI단위 : 미터/제곱초 ( ) 디테기CE의 블로그 세상 DetegiCE.kro.kr 7. 일차원 등가속도 운동 One-Dimentional Motion with Constant Acceleration 8. 자유 낙하 Free Fall ▶ 공기 저항이 없는 이상적인 경우에 해당하는 운동 9. 벡터 Vector 두 벡터의 동등성 삼각형 덧셈법 음벡터 선분 cos , sin tan 10. 이차원 변위 Two Dimensions Displacement ▶ 물체의 변위는 위치 벡터의 변화로 정의된다. SI단위 : 미터 (m) 11. 이차원 평균속도 Two Dimensions Average Velocity ▶ 시간 간격 동안의 물체의 평균속도는 변위를 로 나눈......

Words: 1056 - Pages: 5

Premium Essay

...Collisions and Conservation of Momentum Visit the website http://phet.colorado.edu/en/simulation/collision-lab & complete the following: 1. In the green box on the right side of the screen, select the following settings: 1 dimension, velocity vectors ON, momentum vectors ON, reflecting borders ON, momenta diagram ON, elasticity 0%. Look at the red and green balls on the screen and the vectors that represent their motion. a. Which ball has the greater velocity? b. Which has the greater momentum? 2. Explain why the green ball has more momentum but less velocity than the red ball (HINT: what is the definition of momentum?). 3. Push “play” and let the balls collide. After they collide and you see the vectors change, click “pause”. Click “rewind” and watch the momenta box during the collision. Watch it more than once if needed by using “play”, “rewind”, and “pause”. Zoom in on the vectors in the momenta box with the control on the right of the box to make it easier to see if necessary. a. What happens to the momentum of the red ball after the collision? b. What about the green ball? c. What about the total momentum of both the red and green ball? 4. Change the mass of the red ball to match that of the green ball. a. Which ball has greater momentum now? b. How has the total momentum changed? c. Predict what will happen to the motion of the balls after they......

Words: 408 - Pages: 2

Premium Essay

...One copy of the lab report Physics 1030L/ Section 2 Conservation of Momentum Lab performed: 2/18/13 Report submitted: 2/20/13 Sample Calculations Results The magnitudes of the masses for the gliders before the collision were: mass XA1 is equal to 0.107m, and mass XB1 is equal to 0.101m. The magnitudes after the collision of the masses were: mass XA2 equal to 0.0890m, and mass XB2 equal to 0.0820m. The momentum of the masses before collision were: mass PA1 equal to 0.3737 (kg m/s), and mass PB1 equal to 0.3551(kg m/s). The momentum after collision of the masses were: PA2 equal to 0.3109 (kg m/s), and mass PB2 equal to 0.2886 (kg m/s). When considering the direction of the vectors the area of uncertainty is small when considering the area of both parallelograms of uncertainty, because the overlapping of the parallelograms is only a small portion of each. The momentum was partially conserved within the error range of the parallelograms, or the portion where they overlap. Conclusions 1. It is necessary that they glide on a cushion of air, so that they can avoid any friction which would slow down their movement and could possibly keep them from colliding. The friction would differ for each mass, and would change all the predicted values. If the masses were not on an air cushion, it is impossible to predict that the two masses would ever collide because of the differing frictions for each mass. 2.If the masses......

Words: 406 - Pages: 2