Premium Essay

Nt1310 Unit 6 Lab Report

Submitted By
Words 852
Pages 4
CHAPTER-6

EXPERIMENT RESULT

6.1 System Model
For experimental purposes we assume that total 5000 jobs will be scheduled on the grid consists of 7 clusters. In general, each resource/cluster contains 80 computing nodes (Machines), and each computing node contains 1 Processing Elements (PE). The processors of computing nodes in different resources have same processing power (i.e. 1GHz). Every computing node consist RAM of 53GB approx. Network speeds among the computing node are also assumed same for different resources. The characteristics of 7resources used in our experiment, shown in Table 6.1.

Parameter Name Value
Total Number of Jobs 5000
Number of Cluster 07
Number of CPU per Cluster 80
RAM 53 GB
Baud Rate 10000
CPU Speed 1GHz …show more content…
OF JOBS 3000 3000 3000
MAKESPAN TIME 5645136 5782262 5922181
NET WAITING TIME 0.439 0.575 0.321
MACHINE USAGE 13 hours 15 hours 18 hours
RESPONSE TIME 477713.26 495126.96 512658.25
WEIGHT USAGE 52.36 54.34 55.12
RUN TIME 0.15 1.17 2.26

Table 6.3: Simulation Results of Algorithms TABU+MACO for 3000 jobs.

Parameters Algorithm TABU + MACO TABU+ACO TABU
NO. OF JOBS 5000 5000 5000
MAKESPAN TIME 6061746 6594110 6694110
NET WAITING TIME 0.415 0.533 0.219
MACHINE USAGE 5 hours 9 hours 13 hours
RESPONSE TIME 604801 66020.96 68637.25
WEIGHT USAGE 54.38 54.38 54.42
RUN TIME 0.20 3.17 7.26

Table 6.4: Simulation Results of Algorithms TABU+MACO for 5000 jobs.

Parameters Algorithm TABU + MACO TABU+ACO TABU
NO. OF JOBS 7000 7000 7000
MAKESPAN TIME 9633059 9818827 9899634
NET WAITING TIME 16.28 26.41 13.06
MACHINE USAGE 8 hours 9 hours 11 hours
RESPONSE TIME 70712.87 66020.96 65637.25
WEIGHT USAGE 60.35 60.55 60.58
RUN TIME 0.22 4.16 11.46

Table 6.5: Simulation Results of Algorithms TABU+MACO for 7000 …show more content…
Figure6.1: Percentage of Cluster Usage per day in Tabu + MACO Algorithm.

There are 7 different clusters are being used in the experiment. Each one of consist 80 PE’s; on these PE’s 5000 incoming jobs are being scheduled. The percentage usage of each cluster during a day is shown in the figure. Figure show the percentage of cluster usage per day for the Tabu Search optimization.

Figure6.2: Percentage of Cluster Usage per day in Tabu + ACO Algorithm.
6.3.2 Average Machine Usage
Figure 6.3 and 6.4 shows the Number of hours machine/cluster usage in a day in proposed MACO + Tabu algorithm and ACO + Tabu search respectively. While figure 5.7 and 5.8 shows the Average machine usage per day. Figure 6.3: Number of Hour of Machine Usage per Day in Tabu + MACO Algorithm.

Figure depicts the Average machine usage in a day for proposed algorithm is 5 hour a day while Tabu + ACO takes 9 hour of average machine usage in Tabu Search based optimization. Although the usage of machine in earlier days and the later days are quite similar but empirically average usage of machine in a day is slightly higher in hybrid optimization

Similar Documents

Premium Essay

Nt1310 Unit 6 Lab Report

...For the first round of the stimulation was random mating. After the 20 students drew out two new cards from starting genotype, the new genetic pool had five pairs of dominant homozygous, ten pairs of heterozygous, and five pairs of recessive homozygous. The new generation had the same number of the starting gene pool of the known allele frequency. Random selection frequency of alleles does not change over time, due to which all individuals have an equal chance of being selected. The Hardy-Weinberg equilibrium equation, p2 + 2pq + q2 = 1, is used to define a population in which to understand both allele and genotype frequencies. The equation only occurs when mating is at random on a large population, and the relative genotype and allele frequencies persist in being constant. In all possible combination defined by the Punnett square, 60% or 0.6 of the gene pool is the A allele, and 40% or 0.4 of the a allele, totaling in for 100%. When adding the probability, the results are 0.36 for AA, 0.24 for aA, 0.24 for Aa, and 0.16 aa. In total, will equal 1. The AA homozygotes will have the frequency of p2, and similarly, aa homozygotes will have the frequency of q2 when the population is in equilibrium. Then lastly, the Aa heterozygotes will have the relative genotype frequency of 2pq. The calculation would remain the same throughout generations, but only with random mating. The Hardy-Weinberg equilibrium will not equal 1 when it is disturbed by nonrandom mating, mutations, migration, and...

Words: 754 - Pages: 4

Premium Essay

Nt1310 Unit 6 Lab Report

...only a small amount of power. Step 3. Traffic density metric • Select the path that is lightly loaded from the three selected paths Algorithm 1.1 Algorithm for broadcasting RReq 1.2. Algorithm for node failures reduction Step1: Source broadcasts Route Request packets which are heard by neighbor nodes within the coverage area. Step 2: all node those get the RReq will calculate their remaining battery power by using: Rp = Einitial - Eci Step 3: Also all nodes will calculate their transition power needed to transmit the RReq packet to next-hop by using the following formula: Step 4: Check that they have enough power for transmitting the packet to next-hop. Step 5: The neighboring nodes re-broadcast the route request. Step 6: The destination will select all available path that has enough power 1.3. Algorithm for reducing traffic density Step 1: once all the path those have enough power have been selected the destination nodes can count the number of hop for all the available paths and order them based on the shortest path first. Step 2: The destination node will select the path that is lightly loaded from the ordered list. Step 3: The destination will send the RRep to the source node through the selected path. Step 4: The destination sends Route Reply only to the first received Route Request. ...

Words: 571 - Pages: 3

Premium Essay

Nt1310 Unit 6 Lab Report

...Adedamola Iyiola M.E. LAB: Lab View Section 06   Lab View Adedamola Iyiola Department of Mechanical and Aerospace Engineering Rutgers University, Piscataway, New Jersey 08854 A Data acquisition board, thermocouple and a BNC terminal block were used simultaneously with Lab view to obtain measurements of different waveforms with varying frequencies of 500, 100, and 3000 Hz. Additionally, we varied sampling rates, at an input of 1000 Hz, at 500 Hz and 2500 Hz (0.5x and 2.5x the input wave frequency). Furthermore for the second set of measurements, we obtained data from running a thermocouple data acquisition program. We acquired temperature measurements of a room for a period of 60 seconds and an individual’s finger for 50 seconds....

Words: 1259 - Pages: 6

Premium Essay

Nt1310 Unit 6 Lab Report

...Probability of getting no more than 0 heads: 0.0625 Probability of getting no more than 1 head: 0.3125 Probability of getting no more than 2 heads: 0.6875 Probability of getting no more than 3 heads: 0.9375 Probability of getting no more than 4 heads: 1.000 4. True 5. > pbinom(1, size=3, prob=.5) [1] 0.5 6. > round(pbinom(3, size=5, prob=.5), 2) [1] 0.81 7. > lmb expectation expectation [1] 0.25 or 15 seconds 8. The answer is .06 for minutes or 225 for seconds. 9. > round(pexp(15.5/60, rate=4), 2) # using minutes [1] 0.64 10. > pexp(40.2/60, rate=4) - pexp(10.7/60, rate=4) [1] 0.421445 11. > round(qexp(.95, rate=4), 2) # minutes [1] 0.75 > round(qexp(.95, rate=4/60), 2) # seconds [1] 44.94 12. The R command pexp(1.2, rate=3) shows the estimated probability of randomly selecting a value less than or equal to 1.2 from an exponential distribution that has a rate of 3. 13. > round(1 - pnorm(9, mean=7, sd=3),...

Words: 358 - Pages: 2

Premium Essay

Nt1310 Unit 6 Lab Report

...CHAPTER-6 EXPERIMENTAL SETUP AND RESULTS This chapter provides an overview of network simulation and different VANET simulators that can be used to simulate different VANET algorithms to analyze the performance of the network without the need of real systems. This not only saves cost but also provides opportunity to test new protocols and algorithms in a controlled environment which otherwise would have not been possible. 6.I INTRODUCTION A network simulator is a software program that models the working of a computer network and its communications. It can be a software or hardware that helps to predict the behavior of a network, without need of any actual network. It imitates the working of a network such that the performance of the network can be analyzed without...

Words: 673 - Pages: 3

Premium Essay

Nt1310 Unit 6 Lab Report

...The attractive force between the positive charge in the nucleus and the valence electrons decreases because these electrons are farther from the nucleus. 4. a) The elements that are found at the main peaks of my graph are Lithium, Sodium, Potassium, and Rubidium. These elements are all found in the same group. They are all Alkali Metals. b) The elements that are found at the main valleys of my graph are Neon, Argon, Krypton, and Helium. These elements are all found in the same group. They are all part of the Noble Gases. 5. I predict Rubidium would be the largest atom in the atomic table because it has an atomic radius of 248pm. I predict the smallest atom in the atomic table would be Hydrogen because it has an atomic radius of 32pm. 6. There is a significant jump in the size of the nucleus (protons + neutrons) each time you move from period to period down a group. Additionally, new energy levels of elections are added to the atom as you move from period to period down a group, making the each atom significantly more massive, both is mass and volume. This makes the atomic radii bigger. Part 2 – Ionization Energy 7. The ionization energy is the exact quantity of energy that it takes to remove the outermost electron from the atom. 9. a) The elements that are found at the main peaks of my graph are Helium, Neon, Argon, and Krypton. These elements are all found in the same group. They are all part of the Noble Gases. b) The elements that are found at the main valleys of my...

Words: 1431 - Pages: 6

Premium Essay

Nt1310 Unit 6 Lab Report

...This results in a value of (1.4 ± 0.4)s. This period can then be used to find the undamped oscillation frequency through the formula for frequency. rad/s. Uncertainty for this can be found by the following steps plugging in the appropriate values in this equation: rad/s. = (4.4880 ± 1.2823) rad/s The value of damping time was (2.5698 ± 0.1404)s. This was calculated by taking the natural log of the each ratio, the dividing the period by this value and multiplying by -1, then averaging all the values found. Uncertainty was calculated with standard deviation, in which the difference between each data point and the average was found. Then the differences were all squared, added together and then divided by the number of data points (which was 6 in this case). The recorded measurement for the driven resonant frequency we found through adjusting Lissajous plots was (4.430 ± 0.031)Hz. This was found by finding the frequency, 0.705 ±0.031 Hz, in which the Lissajous plotted by the output voltage and angle was most symmetric and did not lean to either side. This value was multiplied by 2 pi and yielded 4.430 Hz. The uncertainty of the frequency was found by seeing how much of the frequency had to change before seeing a difference in the Lissajous plots, which was 0.005Hz. The uncertainty for the driven resonant frequency was found through this formula . This value of the driven resonant frequency and the damping time can be then used to calculate a measured value of Q by the following...

Words: 1446 - Pages: 6

Premium Essay

Nt1310 Unit 6 Lab Report

...Katie Carroll Mr. Miller APP1 November 15, 2015 1. Background a. Equations: i. Σ F = T-mhg = mha ii. fk=ukN 2. Materials a. Before assembling the materials, prepare a clean, dry workspace (away from food) with all necessary materials. i. Wooden board that can be adjusted to various angles ii. Spring scale iii. Wooden block (with tape on one side) iv. Pulley v. Paperclips (weights) vi. Safety goggles 3. Procedure a. (Part 1)-determine kinetic friction between the wooden block and the wooden board b. Read through the entire procedure and prepare to carefully collect your data before you begin. c. Before assembling the materials, prepare a clean, dry workspace (away from food) with all necessary materials. d. Weigh and record the mass of the wooden block. e. Make sure the surfaced of the wooden plank and the block are clean of dirt so that nothing will disrupt the experimental friction coefficient. f. Put the wooden block (with tape side down) on the end of the wooden board and attach the string to the block. Then attach the spring scale to the other end of the pulley so that it hangs over the far end of the wooden board. g. Put mass on the spring scale and start the block with a small push. i. If the wooden block speeds up, take some of the mass off. ii. If the wooden block slows down, add more mass. iii. Once the block moves across the whole wooden board with a constant speed, record the total hanging mass and its weight. h. (Part 2)- Determine the difference surface area...

Words: 472 - Pages: 2

Premium Essay

Test

...ITT Technical Institute IS3340 Windows Security Onsite Course SYLLABUS Credit hours: 4.5 Contact/Instructional hours: 60 (30 Theory Hours, 30 Lab Hours) Prerequisite(s) and/or Corequisite(s): Prerequisite: NT2580 Introduction to Information Security or equivalent Course Description: This course examines security implementations for a variety of Windows platforms and applications. Areas of study include analysis of the security architecture of Windows systems. Students will identify and examine security risks and apply tools and methods to address security issues in the Windows environment. Windows Security Syllabus Where Does This Course Belong? This course is required for the Bachelor of Science in Information Systems Security program. This program covers the following core areas:    Foundational Courses Technical Courses BSISS Project The following diagram demonstrates how this course fits in the program:    IS4799 NT2799 IS4670 ISC Capstone Project Capstone ProjectCybercrime Forensics NSA    NT2580 NT2670  Introduction to  Information Security IS4680 IS4560 NT2580 NT2670 Email and Web Services Hacking and Introduction to  Security Auditing for Compliance Countermeasures Information Security Email and Web Services      NT1230 NT1330 Client-Server Client-Server  Networking I Networking II  IS3230 IS3350 NT1230 NT1330  Issues Client-Server Client-Server  SecurityContext in Legal Access Security Networking I Networking II   NT1110...

Words: 2305 - Pages: 10