Free Essay

Parabolas

In: Religion Topics

Submitted By kmil05
Words 1205
Pages 5
Parábola, según su sentido griego, el termino parábole, sugiere una comparación, es decir, para significa al lado y bole echar. Este sentido comparativo aparece en los tres evangelios sinópticos sin embargo Juan utiliza otro termino, paroimia, es esta palabra también para significa al lado, pero oimai se traduce por suponer, figurar, pensar, y tradicionalmente se ha traducido en Reina Valera 1960 por alegoría y en Reina Valera Actualizada por figura. Se puede decir que según su sentido griego una parábola es lenguaje figurado que provoca una comparación con el fin de aclarar o iluminar una cosa o idea. A la hora de leer las parábolas se deben tener en cuenta tres cosas. La Historia fijándonos en el contexto histórico y social del momento. Procurando ver la parábola dentro del marco cultural del pueblo de Palestina en los tiempos de Jesús, sobre todo los modos y costumbres. Literaria viendo la parábola como una creación literaria que respeta las normas de composición literaria en cuanto a narrativa, alegoría, retórica, etc. sin caer en una lectura de las parábolas como tratados doctrinales de teología. Finalmente Hermenéutica intenta interpretar la parábola de forma correcta y aplicarla a nuestra realidad hoy. Por esto se puede considerar que las parábolas nos hablan de la intervención de Dios en la historia. Nos retan a dar una respuesta en arrepentimiento y fe, nos invitan a buscar el reino de Dios, por eso dicen que son evangelisticas. Las parábolas de Jesús son aquellas breves narraciones dichas por Jesús de Nazaret que encierran una educación moral y religiosa, revelando una verdad espiritual de forma comparativa. No son fábulas, pues en estas no intervienen personajes animales con características humanas pues se basan en hechos creíbles. Las parábolas se encuentran contenidas en los evangelios canónicos, aunque se pueden encontrar en los evangelios apócrifos, como el de Tomás y de Santiago. La finalidad de las parábolas de Jesús es enseñar como debe actuar una persona para entrar al Reino de los Cielos y, en su mayoría, revelan también sus misterios. En ocasiones Jesús usó las parábolas como armas dialécticas contra líderes religiosos y sociales, como por ejemplo la Parábola del fariseo y el publicano

Lucas 18:9-14 “ A algunos que, confiando en si mismos, se creían justos y que despreciaban a los demás, Jesús les contó esta parábola: Dos hombres subieron al templo a orar; uno era fariseo, y el otro, recaudador de impuestos. El fariseo se puso a orar consigo mismo: “Oh Dios, te doy gracias porque no soy como otros hombres ladrones, malhechores, adúlteros ni mucho menos como el recaudador de impuestos. Ayuno dos veces a la semana y doy la décima parte de todo lo que recibo.” En cambio, el recaudador de impuestos, que se había quedado a cierta distancia, ni siquiera se atrevía a alzar la vista al cielo, sino que se golpeaba el pecho y decía: “! Oh Dios, ten compasión de mi, que soy pecador!” Les digo que este, y no aquel, volvió a su casa justificado ante Dios. Pues todo el que a si mismo se enaltece será humillado, y el que se humilla será enaltecido.”

En la Biblia se encuentran los siguientes textos titulados Propósito de las Parábolas:

Mateo 13:10-17 “ Los discipulos se acercaron y le preguntaron: ¿ Por que le hablas a la gente en parábolas? A ustedes se les ha concedido conocer los secretos del reino de los cielos; pero a ellos no, Al que tiene, se le dará mas, y tendrá en abundancia. Al que no tiene, hasta lo poco que tiene se le quitara. Por eso les hablo a ellos en parábolas: Aunque miran, no ven; aunque oyen, no escuchan ni entienden. En ellos se cumple la profecía de Isaías: “Por mucho que oigan, no entenderán; por mucho que vean, no percibirán. Porque el corazón de este pueblo se ha vuelto insensible; se les han embotado los oídos, y se les han cerrado los ojos. De lo contrario, verían con los ojos, oirían con los oídos, entenderían con el corazón y se convertirían, y yo los sanaría.” Pero dichosos los ojos de ustedes porque ven, y sus oídos porque oyen. Porque les aseguro que muchos profetas y otros justos anhelaron ver lo que ustedes ven, pero no lo vieron; y oír lo que ustedes oyen, pero no lo oyeron.”

Marcos 4:10-12 “ Cuando se quedo solo, los doce y los que estaban alrededor de el le hicieron peguntas sobre las parábolas. A ustedes se les ha revelado el secreto del reino de Dios les contesto; pero a los de afuera todo les llega por medio de parábolas, para que “ por mucho que vean, no perciban; y por mucho que oigan, no entiendan; no sea que se conviertan y sean perdonados.” y

Lucas 8:9-10 “ Sus discipulos le preguntaron cual era el significado de esta parábola. A ustedes se les ha concedido que conozcan los secretos del reino de Dios les contesto; pero a los demás se les habla por medio de parábolas para que “ aunque miren, no vean; aunque oigan, no entiendan.”. Jesús dice que enseña usando parábolas para que comprendan su mensaje sólo aquellos que han aceptado a Dios en su corazón y para que los que tienen "endurecidos sus corazones" y han "cerrado sus ojos" no puedan entender. Por lo tanto comprender el mensaje de Jesús significaría ser un verdadero discípulo suyo y no entenderlo supone que no se está realmente comprometido con Él y por ende no podemos recibir su ayuda ni la de su mensaje. Existen algunos debates sobre si este es el significado original del uso de las parábolas o si en realidad fue agregado por Marcos para reforzar la fe de sus lectores, tal vez cuando se vio perseguido. Esta explicación parece ser esencial para comprender del todo el mensaje real de las parábolas de Jesús, ya que deja claro que es necesario tener fe en Él para entenderlas, o de otro modo se ven confusas. El enfoque principal de las parábolas de Jesús es el reino de los cielos.

Mateo 13:24 “ Jesús les contó otra parábola: El reino de los cielos es como un hombre que sembró buena semilla en su campo.”

Mateo 13:31 “Les contó otra parábola: El reino de los cielos es como un grano de mostaza que un hombre sembró en su campo.”

Mateo 13:44 “El reino de los cielos es como un tesoro escondido en un campo. Cuando un hombre lo descubrió, lo volvió a esconder, y lleno de alegría fue y vendió todo lo que tenia y compro ese campo.”

Mateo 18:23 “ Por eso el reino de los cielos se parece a un rey que quiso ajustar cuentas con sus siervos.” La razón por la cual Jesús siempre enseñaba con parábolas es porque buscaba que el pueblo entendiese los misterios del reino de los cielos, y para ello uso una costumbre típica del pueblo hebreo, enseñar mediante imágenes comunes a la gente, ilustraciones del día a día para poder aclarar el verdadero sentido de vivir según las exigencias del reino.
Salmos 78:2 “Mis labios pronunciaran parábolas y evocaran misterios de antaño,” .

Referencias:

1. Pérez Torres, Rubén. Al Dios no conocido.
2. Biblia Nueva Versión Internacional.

Similar Documents

Free Essay

Parabola Investigation

...Parabola Investigation In this task, I will investigate the patterns in the intersections of parabolas and the lines y=x and y=2x, then I will prove my conjectures and to broaden the scope of the investigation to include other lines and other types of polynomials. 1. Consider the parabola y=(x-3)2 +2=x2-6x+11 and the lines y=x and y=2x. The original graph is shown below (graph 1.1) Find the intersections of the parabola with y=x and y=2x, Graph 1.2. Also, label the x-values of the intersections with the line y=x as they appear from left to right on the x-axis as a1 and a2; label the x-values of the intersections with the line y=2x as b1 and b2. Now, I will using the graph and graph calculator, find the values of a1-b1 and b2-a2 and name them respectively SL and SR. SL=a1-b1=2.381966-1.763932=0.618034 SR=b2-a2=6.236068-4.618034=1.618034 Now, calculate the quantity D= │SL-SR│ D= │SL-SR│=│0.618034-1.618034│=1 By algebra calculation, D=│SL-SR│ =│ a1-b1-(b2-a2) │ =│ a1-b1-b2+a2 │ =│ (a1+ a2 )-(b1+b2) │ Now, I will try other parabolas of the form y=ax2+bx+c, a>0, with vertices in quadrant 1, intersected by the lines y=x and y=2x. y=x2+2x+1 [pic] From the graph we can see there is no intersection of the parabola and y=x, y=2x. Using the algebra way: Solve: (a) x2+2x+1=x (b)......

Words: 566 - Pages: 3

Free Essay

Fortran the Lenght of a Parabola Segment

...Programming Example: The Length of a Parabola Segment http://www.cs.mtu.edu/~shene/COURSES/cs201/NOTES/chap02/p-lengt... Problem Statement Given base b and height h, the length of a special segment on a parabola can be computed as follows: Write a program to read in the values of base and height, and use the above formula to compute the length of the parabola segment. Note that both base and height values must be positive. Solution ! ----------------------------------------------------------! Calculate the length of a parabola given height and base. ! ----------------------------------------------------------PROGRAM ParabolaLength IMPLICIT NONE REAL REAL :: Height, Base, Length :: temp, t 'Height of a parabola : ' Height 'Base of a parabola Base : ' * WRITE(*,*) READ(*,*) WRITE(*,*) READ(*,*) ! ... temp and t are two temporary variables t = 2.0 * Height temp = SQRT(t**2 + Base**2) Length = temp + Base**2/t*LOG((t + temp)/Base) WRITE(*,*) WRITE(*,*) WRITE(*,*) WRITE(*,*) END PROGRAM 'Height = ', Height 'Base = ', Base 'Length = ', Length ParabolaLength Click here to download this program. Program Output Height of a parabola : 100.0 Base of a parabola 78.5 Height = 100. Base = 78.5 Length = 266.149445 : The input values for Height and Base are 100.0 and 78.5, respectively. The computed length is 266.149445. Discussion 1 of 2 4/5/2014 9:30 PM Programming Example: The Length of a Parabola Segment http://www.cs.mtu.edu/~shene/COURSES/cs201/NOTES/chap02/p-lengt... ...

Words: 376 - Pages: 2

Free Essay

Bow and Arrow Parabola

...arrow is 50 feet from where it was released. The target is 120 feet away and the center of the bulls eye is exactly 3 feet above the ground, and 4 inches in diameter. Assuming that Cool guy shoots a perfectly straight shot, will he hit a bulls eye? We need to use the vertex form of the equation y = a(x – h)^2 + k  To find the vertical height of the arrow as it approaches the target.  Since the arrow has a maximum height of 5feet when it has traveled 50 feet toward the target, we know that the vertex is at (50, 5).  Substituting this into the equation, we get: y = a(x – 50)^2 + 5 To find the stretching factor, a, we need to plug in a point other than the vertex.  Since the arrow was initially launched at a height of 3 feet, the parabola goes through the point (0,3).  Replacing x and y in the equation, we get: 3 = a(0 – 50)^2 + 5 3 = 2500a + 5 -2 = 2500a a = -0.0008 This gives a final equation of  y = -0.0008(x – 50)^2 + 5 We can find the height of the arrow when it hits the target by plugging in 120 feet in for x. y = -0.0008(120 – 50)^2 + 5 y = 4.888 feet The bulls eye is at 3 feet above the ground. Subtracting the height from 3, we will find the place on the target that the arrow hits. 3 – 4.888 = -1.888 feet below the bulls eye -1.888 ft * 12 in/ft = 22.656 inches below the bulls eye Cool guy missed the bulls eye. In fact he missed the whole target. Maybe next time, Cool Guy....

Words: 369 - Pages: 2

Free Essay

Dflgvre

...will appreciate at most 5% a year, how much will the condo be worth in 5 years? Section 2: Conic Sections Standard forms to Know: * Parabola * Circle * Ellipse * And what does a hyperbola look like? (No formula necessary) Question 1) Write an equation for the circle that satisfies each set of conditions. (2 marks each) a) centre (12, -4), radius 81 units _________________________________________ b) centre (0, 0), radius 3/5 units _________________________________________ Question 2) Given the equation of the parabola answer the following questions. (10 marks) a) b) c) i. What is the vertex? ii. Does the parabola face up or down? iii. Is the parabola wide or narrow compared to the basic parabola? iv. What is the axis of symmetry? v. Make an x-y table to show at least 4 coordinate points on the parabola. vi. Graph the parabola showing the vertex and coordinate points. Question 3) Change the equation of the parabola from general form to standard form then answer the questions. (14 marks) a) b) i. What is the vertex? ii. Does the parabola face up or down? iii. Is the parabola wide or narrow compared to the basic parabola? iv. What is the axis of symmetry? v. Make an x-y table to show at least 4 coordinate points on the parabola. vi. Graph the parabola showing the vertex and coordinate points. Question 4) Given the equation of the circle answer the following questions. (4 marks......

Words: 612 - Pages: 3

Free Essay

Maths

...to the vertical axis of the cone. First, we may choose our plane to have a greater angle to the vertical than does the generator of the cone, in which case the plane must cut right through one of the nappes. This results in a closed curve called an ellipse. Second, our plane may have exactly the same angle to the vertical axis as the generator of the cone, so that it is parallel to the side of the cone. The resulting open curve is called a parabola. Finally, the plane may have a smaller angle to the vertical axis (that is, the plane is steeper than the generator), in which case the plane will cut both nappes of the cone. The resulting curve is called a hyperbola, and has two disjoint “branches.” Notice that if the plane is actually perpendicular to the axis (that is, it is horizontal) then we get a circle – showing that a circle is really a special kind of ellipse. Also, if the intersecting plane passes through the vertex then we get the so-called degenerate conics; a single point in the case of an ellipse, a line in the case of a parabola, and two intersecting lines in the case of a hyperbola. Although intuitively and visually appealing, these definitions for the conic sections tell us little about their properties and uses. Consequently, one should master their “plane geometry” definitions as well. It is from these definitions that their algebraic representations may be derived, as well as their many important properties,such as the reflection properties. (That the......

Words: 2437 - Pages: 10

Premium Essay

Re: Module 5 Dq 2

...Section 3.1 - Quadratic Functions A quadratic function is a 2nd degree polynomial function There are two forms of the quadratic function: 1. The general form 2. The standard form The graph of every quadratic function is a parabola. The parabola opens up if and opens down if The highest or lowest point on the parabola is known as the vertex . When discussing relative maxima or minima, we write to mean that is a maximum (if the parabola opens down) or that is a minimum (if the parabola opens up). To obtain the vertex from the standard form simply write using the numbers from the equation (notice you are changing the sign of the from the equation). To obtain the vertex from the general form use the formulas , . (an alternate way to find is to evaluate once is known) Graphing A minimum of 3 points must be used; the vertex and one point on each side of the parabola. Therefore, to graph a quadratic function do each of the following: Determine whether the parabola opens up or down Determine the vertex Solve the equation for the x-intercepts Evaluate for the y-intercept Sketch the graph (if there are no x-intercepts, calculate additional points using the equation) Applications 1. You have 200 feet of fencing to enclose a rectangular plot that borders on a river. If you do not fence the side along the river, find the length and width of the plot that will maximize the area. What is the largest area that can...

Words: 308 - Pages: 2

Free Essay

Function

...(Dugopolski, 2012). Problem #26: h(x) =-3x2 The relation is h(x) =-3x2 h (0) =-3×02=0 h (-2)=-3×(-2)2=-12 h (-1) =-3×(-1)2=-3 h(1)=-3(1)2=-3 h(2)=-3(2)2=-12 X | h(x)=-3x2 | 0 | 0 | -2 | -12 | -1 | -3 | 1 | -3 | 2 | -12 | The above represents the points I will plot to graph the function h(x) = 3x2. The function is shaped like a parabola. This parabola opens down. The x-axis interception point of -3x2 :( 0, 0) and the y-axis interception of -3x2 (0,0). The domain is all real number, which can be written in standard notation as D= (-∞, ∞) and R= (-∞, 0). When I plot the parabola I notice it has a vertex of (0,0). From the above I can truly this relation and is also a function as every element of the domain has one and only once value associated with it in the range and passes through the vertical line test. Image below represents my function h(x) =-3x2. My second problem comes from page 711 #34.The problem states h(x) =-√x-1 h(x) =-√1-1=0 h(x) =-√2-1=-1 h(x) =-√3-1=-1.41 x | h(x) =-√x-1 | 1 | 0 | 2 | -1 | 3 | -1.41 | From the results, when I plot my graph it resembles half of a parabola, which opens to the left with a line which falls below the x-axis, except my starting point (1,0). This is functionsy=-x-1. The function has a range [0, -∞) because the line starts at and includes the x-axis, then it continues going down forever. The domain (left/right) would be [1, ∞)...

Words: 321 - Pages: 2

Free Essay

Chapter 9 Review

...9.1 Circles: 1. Write the equation in standard form for the circle with center at and radius 2. Write the equation in standard form for the circle with center at and radius 3. Graph the circle given by 4. Graph the circle given by 5. Write the equation of the circle in standard form given: 9.1 Parabolas: 6. Find the focus of the parabola 7. Find the focus of the parabola 8. Write the equation of the parabola in standard form and find the focus and directrix. 9. Write the equation of the parabola in standard form and find the focus and directrix. 10. Write the equation for the parabola with vertex and focus 11. Write the equation for the parabola with vertex and directrix 9.2 Ellipses: 12. Identify the center, vertices, & foci of the ellipse given by and graph. 13. Identify the center, vertices, & foci of the ellipse given by and graph. 14. Write the equation in standard form: 9.5 Parametric Equations: 15. Write and in rectangular form. 16. Write each pair of parametric equations in rectangular form: 17. Write and in rectangular form. 18. Write and in rectangular form. 9.6 Polar Equations: 19. Graph the following polar coordinate: 20. Graph the following polar coordinate: 21. Graph the following polar coordinate: 22. Graph the following polar coordinate: 23. Find the polar coordinate of the point 24. Find the polar coordinate of the point ......

Words: 319 - Pages: 2

Free Essay

Math

...MA1200 Basic Calculus and Linear Algebra I Lecture Note 1 Coordinate Geometry and Conic Sections υ MA1200 Basic Calculus and Linear Algebra I Lecture Note 1: Coordinate Geometry and Conic Sections Topic Covered • Two representations of coordinate systems: Cartesian coordinates [ሺ‫ݕ ,ݔ‬ሻcoordinates] and Polar coordinates [ሺ‫ߠ ,ݎ‬ሻ-coordinates]. • Conic Sections: Circle, Ellipse, Parabola and Hyperbola. • Classify the conic section in 2-D plane General equation of conic section Identify the conic section in 2-D plane - Useful technique: Rotation of Axes - General results φ MA1200 Basic Calculus and Linear Algebra I Lecture Note 1: Coordinate Geometry and Conic Sections Representations of coordinate systems in 2-D There are two different types of coordinate systems used in locating the position of a point in 2-D. First representation: Cartesian coordinates We describe the position of a given point by considering the (directed) distance between the point and ‫-ݔ‬axis and the distance between the point and ‫-ݕ‬axis. ‫ݕ‬ 0 ܽ ܲ ൌ ሺܽ, ܾሻ ܾ ‫ݔ‬ Here, ܽ is called “‫-ݔ‬coordinate” of ܲ and ܾ is called “‫-ݕ‬coordinate” of ܲ. χ MA1200 Basic Calculus and Linear Algebra I Lecture Note 1: Coordinate Geometry and Conic Sections ܲଶ ൌ ሺ‫ݔ‬ଶ , ‫ݕ‬ଶ ሻ ܲଵ ൌ ሺ‫ݔ‬ଵ , ‫ݕ‬ଵ ሻ Given two points ܲଵ ൌ ሺ‫ݔ‬ଵ , ‫ݕ‬ଵ ሻ and ܲଶ ൌ ሺ‫ݔ‬ଶ , ‫ݕ‬ଶ ሻ, we learned that • the distance between ܲଵ and ܲଶ : ܲଵ ܲଶ ൌ ඥሺ‫ݔ‬ଶ െ ‫ݔ‬ଵ ሻଶ ൅ ሺ‫ݕ‬ଶ െ ‫ݕ‬ଵ...

Words: 7824 - Pages: 32

Free Essay

Conic Sections

...from one edge of the cone to the other cone, you are dealing with a parabola. If you take a slice from directly off centered but straight down from top to bottom, you give yourself a hyperbola. These are a few terms with definitions you will see while working with conic sections. In a circle, ellipse, and a hyperbola you have a Center. Which is usually at the point of (h,k.) The focus or “Foci” is the point which distances are measured in forming the conic. The directrix is the distance that is measured in forming the conic. The major access is the line that is perpendicular to the directrix that passes through the foci. Half of the major axis between the center and the vertex is called the semi major access. There is a general equation that covers all the conic sections and goes as follows: Ax2+Bxy+Cy2 + Dx+Ey+F=0. From this equation you can create equations for circles, ellipses, parabolas and hyperbolas. There is a test to find out which conic section you are dealing with by just looking at the equations. If both variables not squared then it’s a parabola, if it is you can move on and look to see if the squared terms have the opposite signs. If so then its a hyperbola, if not move on to see if the squared terms are multiplied by the same number. If so it’s a circle if not then its an ellipse. APPLICATIONS OF A CONIC SECTION Circle: x2 + y2 + Dx + Ey + F = 0 Ellipse: Ax2 + Cy2 + Dx + Ey + F = 0 Parabola: Ax2 + Dx + Ey = 0 Hyperbola: Ax2 – Cy2 + Dx + Ey + F =......

Words: 462 - Pages: 2

Free Essay

Paper

...------------------------------------------------- EXERCISE 5.2 (3.5 hours) Assessment Preparation Checklist To prepare for this assessment: * Read Section 10.1: The Ellipse, pp. 890–901, Section 10.2: The Hyperbola, pp. 902–916, and Section 10.3: The Parabola, pp.916–925 from your textbook, Algebra and Trigonometry. These topics will introduce you to the concepts such as hyperbola and parabola. * Review the Module 5 lesson. This lesson will provide you various examples of the topics covered in this module. Title: Graphing Ellipse, Hyperbola, and Parabola Answer the following questions to complete this exercise: 1. Find the standard form of the equation of the ellipse and give the location of its foci. The standard form of the equation of an ellipse with the center at the origin and major and minor axes of lengths 2a and 2b (where a and b are positive, and a2 > b2) is: The location of foci are at (–c, 0) and (c, 0) where c2 = a2 – b2. 2. Graph the ellipse. and choose the correct graph from the given graphs: a. b. c. d. [Hint: To graph this ellipse, find the center (h, k) by comparing the given equation with the standard form of equation centered at (h, k). Next, find a and b. Find the vertices (h – a, k) and (h + a, k). Find the foci (h + c, k) and (h – c, k).] 3. Find the standard form of the equation of the hyperbola whose graph is given below. 4. Find the vertices of the hyperbola. ...

Words: 314 - Pages: 2

Premium Essay

Real World Quadratic Functions

...of business being able to solve real world quadratic functions are very important. When we think about the quadratic curves I would point to curves known as the circle, ellipse, hyperbola and parabola (Dugopolski, 2012). I at first thought this was something that came about during my time but these actual quadratic curves came about during the ancient Greek times but they now have more real world applicability than one would think. Quadratic equations described the orbits where the planets moved round the Sun but also furthered advances in astronomy (Budd & Sangwin, 2004). A long time ago Galileo found some type of link between quadratic equations and acceleration (2004). I would believe that being able to solve real world quadratic problems are important in business because we should be able to show a return on investment or profit. We need to be able to analyze the accounts payable and receivable to determine how the business looks. Quadratic functions are not only used in business they are used in science and engineering just to name a couple of areas. Our task today is not only to show how important it is to understand quadratic functions but also to explain how important they are in business. When we think about quadratic functions we may think about the u-shape of the parabola which may help us solve some word problems dealing with bouncing balls, satellite dishes, or model rockets. In business these functions will help us to show or forecast business profits and......

Words: 1307 - Pages: 6

Premium Essay

Dw3Dw3

...horizontally. · If c > 1 , the graph will be compressed vertically and horizontally. · If -1 < c < 0 , the graph will be reflected across the x-axis (now a downwards-opening parabola instead of upwards-opening), and stretched vertically and horizontally. · If c < -1 , the graph will be reflected across the x-axis (now a downwards-opening parabola instead of upwards-opening), and compressed vertically and horizontally. 3. Grouping method of factoring a quadratic expression: · ax^2 + bx + c · Find the product a*c · Find two factors of ac that add up to b · Split the middle term into two terms using these factors · Group the four terms to form two pairs Factor each pair. · Factor out the greatest common factor out of each group. · Factor out the common binomial within parenthesis. · Example: Factor x2 + 6x + 8 a*c = 8 · 2 + 4 = 6 "b" term. · Factoring by grouping:x2 + 6x + 8 *x2 + 2x + 4x + 8 *(x^2 + 2x) + (4x + 8) *x(x + 2) + 4(x + 2) *(x+2)(x+4) 4. Graph one of the 2nd degree functions from question 1: · f(x)=x2 + 6x + 5= (x+1)(x+5) · The coefficient of x^2 is positive and therefore it is a parabola that opens upward. · To find the roots, set f(x) = 0 and solve for x. · (x+1)(x+5) = 0 · when x = -1 or x = -5. · Those are the roots of the function.......

Words: 815 - Pages: 4

Premium Essay

Business Application

...and the demand function is the point when the quantity of a commodity demanded is equal to the quantity supplied; this is called Market Equilibrium. 1. The price at that intersection point is the Equilibrium Price. 2. The quantity at that intersection point is the Equilibrium Quantity. www.rit.edu/asc Page 1 of 2 VI. Optimization (Max / Min) in Algebra for Management Science a. When finding the maximum (minimum) of a quadratic function, find the vertex 1. The graph of a Quadratic function ( y = ax 2 + bx + c ) is a parabola. −b 2. Vertex of a parabola: Use x = to find the x value and then sub x in to get y…(x, y) 2a b. If a revenue function is a parabola opening down, then the vertex is the MAXIMUM REVENUE. Vertex of revenue function = (# of units, $ maximum revenue) c. If a profit function is a parabola opening down, then the vertex is the MAXIMUM PROFIT. Vertex of profit function = (# of units, $ maximum profit) d. If a cost function is parabola opening up, then the vertex is the MINIMUM COST. Vertex of cost function = (# of units, $ minimum cost) VII. Optimization (Max / Min) in Calculus for Management Science To find the maximum (minimum) value, 1. Use derivative rules to take the derivative of the function 2. Set the derivative equal to zero and solve VIII. If the question asks you to find… a. Break-even point(s) 1. Determine the revenue and cost functions. 2. Set the revenue function equal to the cost function and solve. OR 1. Determine the profit......

Words: 732 - Pages: 3

Free Essay

Math

...the sphere and cylinder. He realized that the volume of a cylinder is equal to 2/3 times the volume of the corresponding sphere and that the surface area of cylinder, including both ends, equals 2/3 times the surface area of the corresponding sphere. Archimedes also worked on the quadrature of the parabola, conoids and spheroids and found that the area of the parabolic segment of a parabola is equal to 3/4 times that of the triangle with the same base and height, the volume of any segment of a paraboloid is 3/2 times that of a cone with the same base and axes, and the ratio of the two segments formed by cutting a solid bounded by a paraboloid with two planes in an arbitrary way is equal to that of the squares of the lengths of their axes. He created scientific notation and it is believed that he was actually the first to have invented integral calculus, 2000 years before Newton and Leibniz. To document his multitude of findings Archimedes wrote many books. Which include On Plane Equilibria or Centres of Gravity of Planes, On the Sphere and the Cylinder, On Spirals, On Floating Bodies, Sandreckoner, Method, On Conoids and Spheroids, A Collection of Lemmas, The Quadrature of Parabola, and The Measurement of the Circle. The most famous of his works is the Method, this book was the last of his written works before he died at the hands of a Roman soldier around 212B.C. It was lost for years because in the twelfth century it was unbound, scraped, and washed. The parchment leaves......

Words: 545 - Pages: 3