Free Essay


In: Science

Submitted By nehllajacinto
Words 1431
Pages 6
Assignment in Physics...
1. Definition of Science, Major branches of science
2. Scientific Method
3. Definition of Physics and its major branches
4. Notable Physicist and their contribution
5. Importance of Physics in our everyday life and in our society.
(Write the references)

Short bond paper, written or computerized (font: Times New Roman/font size: 12)

Reading assign.
Diff. system of measurement fundamentals and derive quantities scientific notation rules in significant figures conversion of units )

I.1 Science

The intellectual and practical activity encompassing the systematic study of the structure and behaviour of the physical and natural world through observation and experiment.
I.2 The Branches of Science
The Physical Sciences * Physics: The study of matter and energy and the interactions between them. Physicists study such subjects as gravity, light, and time. Albert Einstein, a famous physicist, developed the Theory of Relativity. * Chemistry: The science that deals with the composition, properties, reactions, and the structure of matter. The chemist Louis Pasteur, for example, discovered pasteurization, which is the process of heating liquids such as milk and orange juice to kill harmful germs. * Astronomy: The study of the universe beyond the Earth's atmosphere.
The Earth Sciences * Geology: The science of the origin, history, and structure of the Earth, and the physical, chemical, and biological changes that it has experienced or is experiencing. * Oceanography: The exploration and study of the ocean. * Paleontology: The science of the forms of life that existed in prehistoric or geologic periods. * Meteorology: The science that deals with the atmosphere and its phenomena, such as weather and climate.
The Life Sciences (Biology) * Botany: The study of plants. * Zoology: The science that covers animals and animal life. * Genetics: The study of heredity. * Medicine: The science of diagnosing, treating, and preventing illness, disease, and injury.
( )

I.3 Other Branches of Science:

Aerodynamics: the study of the motion of gas on objects and the forces created
Anatomy: the study of the structure and organization of living things
Anthropology: the study of human cultures both past and present
Archaeology: the study of the material remains of cultures
Astronomy: the study of celestial objects in the universe
Astrophysics: the study of the physics of the universe
Bacteriology: the study of bacteria in relation to disease
Biochemistry: the study of the organic chemistry of compounds and processes occurring in organisms

Biophysics: the application of theories and methods of the physical sciences to questions of biology
Biology: the science that studies living organisms
Botany: the scientific study of plant life
Chemical Engineering: the application of science, mathematics, and economics to the process of converting raw materials or chemicals into more useful or valuable forms
Chemistry: the science of matter and its interactions with energy and itself
Climatology: the study of climates and investigations of its phenomena and causes
Computer Science: the systematic study of computing systems and computation
Ecology: the study of how organisms interact with each other and their environment
Electronics: science and technology of electronic phenomena
Engineering: the practical application of science to commerce or industry
Entomology: the study of insects
Environmental Science: the science of the interactions between the physical, chemical, and biological components of the environment
Forestry: the science of studying and managing forests and plantations, and related natural resources
Genetics: the science of genes, heredity, and the variation of organisms
Geology: the science of the Earth, its structure, and history
Marine Biology: the study of animal and plant life within saltwater ecosystems
Mathematics: a science dealing with the logic of quantity and shape and arrangement
Medicine: the science concerned with maintaining health and restoring it by treating disease
Meteorology: study of the atmosphere that focuses on weather processes and forecasting
Microbiology: the study of microorganisms, including viruses, prokaryotes and simple eukaryotes
Mineralogy: the study of the chemistry, crystal structure, and physical (including optical) properties of minerals
Molecular Biology: the study of biology at a molecular level
Nuclear Physics: the branch of physics concerned with the nucleus of the atom
Neurology: the branch of medicine dealing with the nervous system and its disorders
Oceanography: study of the earth's oceans and their interlinked ecosystems and chemical and physical processes
Organic Chemistry: the branch of chemistry dedicated to the study of the structures, synthesis, and reactions of carbon-containing compounds
Ornithology: the study of birds
Paleontology: the study of life-forms existing in former geological time periods
Petrology: the geological and chemical study of rocks
Physics: the study of the behavior and properties of matter
Physiology: the study of the mechanical, physical, and biochemical functions of living organisms
Radiology: the branch of medicine dealing with the applications of radiant energy, including x-rays and radioisotopes
Seismology: the study of earthquakes and the movement of waves through the Earth
Taxonomy: the science of classification of animals and plants
Thermodynamics: the physics of energy, heat, work, entropy and the spontaneity of processes
Zoology: the study of animals
II. Scientific Method 1. Formulate a question. 2. Research the question. 3. Form a hypothesis. 4. Conduct an experiment to test your hypothesis. 5. Analyze data. 6. Draw conclusions. 7. Communicate results.

III.1 Physics

Physics is the scientific study of matter and energy and how they interact with each other.

III.2 Major Branches

Classical * Mechanics fundamental branch, deals with motion. * Thermodynamics study of heat and work. * Wave physics study of waves. * Electromagnetism study of the relationship between electricity and magnetism. * Electronics study of electrons in miniature devices.

Modern * Nuclear physics study of radiation and radio activities. * Relativity in depth study of mechanics ( space time ) * Quantum physics study of wave property of matter. * Atomic physics study of atomic structure.
( Physics: lesson #1 )

IV. Notable Physicist

Sir Isaac Newton (1642-1727)
English physicist and mathematician, considered by many to be the greatest physicist of all time. His most famous contributions to physics are his law of gravitation and laws of motion. He also invented calculus, and made important discoveries in the field of optics (for example, the discovery that white light may be split into the colours of the rainbow by a prism). The SI unit of force is named after him.

André-Marie Ampère (1775-1836)
French physicist most famous for investigating the magnetic fields produced by current-carrying wires. His work extended that of the Danish physicist Hans Oersted, who discovered in 1819 that a compass needle was deflected by a current-carrying wire. He also invented the solenoid. Today, the law that governs the magnetic fields produced by electric currents is called Ampère's Law, and the SI unit of electric current is named in his honour.

Carl Friederich Gauss (1777-1855)
German mathematician who is most famous for his discoveries in pure mathematics. Indeed, he has been dubbed the 'prince of mathematics'. However, he also made a number of important contributions to physics. He invented the magnetometer and with the German physicist Wilhelm Weber measured the intensity of magnetic forces. He also took Coulomb's famous inverse-square law for the electric field of a point charge and generalized it to an arbitrary charged distribution. This more general law is now known as Gauss's Law.

Michael Faraday (1791-1867)
English physicist who was one of the greatest experimentalists in the history of physics. This is remarkable as he had no formal training. Instead he learned about physics and chemistry by working as an assistant to Sir Humphrey Davy. Faraday made many important contributions to the study of electricity and magnetism, including the discovery of electromagnetic induction (now known as Faraday's Law), the invention of the electric motor, and the laws of electrolysis. The SI unit of capacitance is named after him.

James Clerk Maxwell (1831-1879)
Scottish mathematician and physicist who, in the 1860s, took the laws of electricity and magnetism that had been discovered over the previous century or so, and united them into one theory called electromagnetism. This theory is neatly summarized in 4 simple equations known as Maxwell's equations. One consequence of this was the demonstration that light is an electromagnetic wave. Maxwell also developed the kinetic theory of gases, deriving the distribution of molecular speeds in a gas at a given temperature.

James Prescott Joule (1818-1889)
English physicist who made many meticulous experiments that demonstrated that heat and work are equivalent. Although he was not the first to do this, it was his demonstration that eventually came to be accepted. The SI unit of work is named in his honour.
( )
V. Importance of Physics

Similar Documents

Free Essay


...Aristotle was perhaps the first in the Western tradition to look at mechanics in any sort of structured way. A philosopher, rather than physicist, Aristotle thought about the way objects interact with each other, particularly their motions. One of the ideas to come from Aristotle’s work is that objects “like” to remain at rest. This seems rather reasonable put a book on a table and it remains still, push it gently and it will move until you stop. This begs the question, though what happens when we throw ad object? Our hand stops pushing, but the object continues to move. Likewise when we roll a ball we release the ball and it continues to move. Aristotle’s answer was impetus. When an object is moved by another (your hand, for example, throwing a ball), it accrues impetus. When the mover stops acting upon the movee, the impetus it accrued whilst being acted upon is used to continue the motion. Under this model, we would expect objects to exhibit straight-line trajectories rather than the parabolic trajectories we see when we throw an object A second idea of Aristotle’s is that heavier objects fall faster than lighter objects. It does, at first glance, seem rather reasonable but it is, like the idea of impetus, quite easily shown incorrect. The Aristotleans didn’t bother to take observations or do experiments to support their beliefs and most of those that came after them were content to trust Aristotle. Thus for more than 100 years, our understanding of mechanics was......

Words: 667 - Pages: 3

Free Essay


...Statics of Rigid Bodies STATICS OF RIGID BODIES Chapter 1: Introduction Department of Engineering Sciences enter 〉〉 Statics of Rigid Bodies DEFINITION Mechanics • the study of the relationship among forces and their effects on bodies. • the science which describes and predicts the conditions for rest and motion of bodies under the action of forces. • a physical science (for it deals with physical phenomena) Prev Department of Engineering Sciences Jump to… Stop Show Next Statics of Rigid Bodies MECHANICS MECHANICS RIGID BODIES STATICS bodies at rest DYNAMICS bodies in motion DEFORMABLE BODIES INCOMPRESSIBLE FLUIDS COMPRESSIBLE Prev Department of Engineering Sciences Jump to… Stop Show Next Statics of Rigid Bodies What is a FORCE? represents the action of one body on another that tends to change the state or state of motion of a body. may be exerted by actual contact or at a distance (e.g. gravitational and magnetic forces). characterized by its point of application, magnitude and direction. represented by a vector. Prev Department of Engineering Sciences Jump to… Stop Show Next Statics of Rigid Bodies Effects of a FORCE • development of other forces (reactions or internal forces) • deformation of the body • acceleration of the body Applied Force Prev Department of Engineering Sciences Jump to… Stop Show Next Statics of Rigid Bodies Development of other......

Words: 534 - Pages: 3

Free Essay


...1. (5) famous physicist in their invention. Denis Papin (22 August 1647 - c. 1712) was a French physicist, mathematician andinventor, best known for his pioneering invention of the steam digester, the forerunner of the steam engine and of the pressure cooker. Thomas Alva Edison (February 11, 1847 – October 18, 1931) was an American inventorand businessman. He developed many devices that greatly influenced life around the world, including the phonograph, the motion picture camera, and a long-lasting, practical electriclight bulb. Dubbed "The Wizard of Menlo Park" by a newspaper reporter, he was one of the first inventors to apply the principles of mass production and large-scale teamwork to the process of invention, and because of that, he is often credited with the creation of the first industrial research laboratory Alexander Graham Bell (March 3, 1847 – August 2, 1922) was an eminent scientist, inventor, engineer and innovator who is credited with inventing the first practical telephone. Many other inventions marked Bell's later life, including groundbreaking work in optical telecommunications, hydrofoils and aeronautics. In 1888, Bell became one of the founding members of the National Geographic Society.[8] He has been described as one of the most influential figures in human history. John Logie Baird FRSE (13 August 1888 – 14 June 1946) was a Scottish engineer and inventor of the world's first practical, publicly demonstrated television system, and also the world's......

Words: 508 - Pages: 3

Free Essay


...Discussion #3 For this experiment we measured gravitational acceleration and velocity of a cart getting pushed up a ramp. First we had to make a prediction of how a velocity and acceleration graph would look like with a cart going up the ramp. After that we actually started to do the experiment. We then went to the computer which would help us graph our measurements of each time we did the experiment. It measured velocity, acceleration, and position of the cart each time. We did the experiment about a couple times until we got a good looking graph, then we recorded it on our lab reports and used it for the rest of our remaining results. Before using that, we took a measurement of the angle of the ramp which turned out to be 4.04 degrees. After that, we then took the graphs we did that were on the computer and we used different tools to find out the acceleration and slope of each specific time in the reading the lab report told us to do. From there after we were done, we then waited till the whole class was done and we all wrote down what our readings were for each measurement. Our measurements were; 4.04 degrees for angle A, .63 kg for the mass of the cart, .582 with an uncertainty of .009 for our acceleration from the average slope, .58 with an uncertainty of .009 for th average acceleration from STATS , 1.13 for mass of the cart with added mass, .569 with an uncertainty of .032 for acceleration from average slope with the doubled mass, and finally 8.199 with an......

Words: 285 - Pages: 2

Premium Essay

Physics Research

...Galileo was born in Pisa (then part of the Duchy of Florence), Italy in 1564, the first of six children of Vincenzo Galilei, a famous lutenist, composer, and music theorist; and Giulia Ammannati. Galileo was named after an ancestor, Galileo Bonaiuti, a physician, university teacher and politician who lived in Florence from 1370 to 1450. Galileo Galilei  was an Italian physicist, mathematician, astronomer, and philosopher who played a major role in the scientific revolution. Galileo has been called the "father of modern physics Galileo's theoretical and experimental work on the motions of bodies, along with the largely independent work of Kepler and René Descartes, was a precursor of the classical mechanics developed by Sir Isaac Newton. Galileo conducted several experiments with pendulums. It is popularly believed that these began by watching the swings of the bronze chandelier in the cathedral of Pisa, using his pulse as a timer. Later experiments are described in his Two New Sciences. Galileo claimed that a simple pendulum is isochronous, i.e. that its swings always take the same amount of time, independently of the amplitude. In fact, this is only approximately true. Galileo also found that the square of the period varies directly with the length of the pendulum. It is said that at the age of 19, in the cathedral of Pisa, he timed the oscillations of a swinging lamp by means of his pulse beats and found the time for each swing to be the same, no matter what the amplitude...

Words: 734 - Pages: 3

Premium Essay

Math and Physics

...MOST DIFFICULT SUBJECTS FOR HIGHSCHOOL STUDENTS: MATH AND PHYSICS A Term Paper Presented to the Faculty of Saint Joseph's School In Partial Fulfillment of the Requirement in English IV Submitted to: Gemalyn Cantes Submitted by: Jovilyn Bumohya Date of submission: January 5, 2009 iii CONTENTS TITLE PAGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii CONTENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ACKNOWLEDGEMENT. . . . . . . . . . . . . . . . . . . . . . . . . xii CHAPTER I: THE PROBLEM AND ITS BACKGROUND A. Statement of the Problem. . . . . . . . . . . . . . . . 1 B. Objectives of the Study. . . . . . . . . . . . . . . . . 1 C. Hypothesis. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 D. Significance of the Study. . . . . . . . . . . . . . . . 1 E. Scope and Delimitation. . . . . . . . . . . . . . . . . 2 F. Definition of Terms. . . . . . . . . . . . . . . . . . . . 2 CHAPTER II: MOST DIFFICULT SUBJECTS FOR HIGHSCHOOLSTUDENTS: MATH AND PHYSICS A. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . 3 B. Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . 3 CHPATER III: SUMMARY, CONCLUSION AND RECOMMENDATION A. Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 B. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . 5 C.......

Words: 1424 - Pages: 6

Free Essay

Real World Physics

...REAL WORLD PHYSICS Did you know that Physics and Sports cannot be separated? In sports, athletes need to apply the concepts of Physics. But the application of Physics is not just limited to the machineries but also on how people should move the parts of their body. If successfully applied, well it can increase an athlete’s performance. But there are far more reasons why I believe Physics is a spectator of sports: firstly the physics of ice skating or figure skating which was shown in the movie Ice Princes that I recently watched; second, the physics of playing basketball and lastly, the physics of archery. To start off, the movie Ice Princess is the perfect example wherein Physics was applied into sports. Remember Isaac Newton’s first law of motion? Which states: An object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an unbalanced force. (Mckinley, 2000) It is also known as inertia, and the very main reason why ice skaters glide smoothly on ice with the help of friction simply because there is less friction on ice. It is truly amazing on how the girl in the movie successfully applied Physics in figure skating. Another argument I have is, when your playing basketball. Physics is applied and can be seen when basketball players shoot the ball into the ring. As seen in the viral game angry birds, it basically shows and applies the concept of projectile motion wherein before the bird flies, a...

Words: 570 - Pages: 3

Free Essay

Understanding the World of Physics

...UNDERSTANDING PHYSICS – Part 1 MOTION, SOUND & HEAT Isaac Asimov Motion, Sound, and Heat From the ancient Greeks through the Age of Newton, the problems of motion, sound, and heat preoccupied the scientific imagination. These centuries gave birth to the basic concepts from which modern physics has evolved. In this first volume of his celebrated UNDERSTANDING PHYSICS, Isaac Asimov deals with this fascinating, momentous stage of scientific development with an authority and clarity that add further lustre to an eminent reputation. Demanding the minimum of specialised knowledge from his audience, he has produced a work that is the perfect supplement to the student’s formal textbook, as well se offering invaluable illumination to the general reader. ABOUT THE AUTHOR: ISAAC ASIMOV is generally regarded as one of this country's leading writers of science and science fiction. He obtained his Ph.D. in chemistry from Columbia University and was Associate Professor of Bio-chemistry at Boston University School of Medicine. He is the author of over two hundred books, including The Chemicals of Life, The Genetic Code, The Human Body, The Human Brain, and The Wellsprings of Life. The Search for Knowledge From Philosophy to Physics The scholars of ancient Greece were the first we know of to attempt a thoroughgoing investigation of the universe--a systematic gathering of knowledge through the activity of human reason alone. Those who attempted this rationalistic search for......

Words: 259 - Pages: 2

Free Essay

Physics Test Paper

...[pic] |Level 1 Science | |90940 (1.1): Demonstrate understanding of aspects | |of mechanics | Credits: Four You should answer ALL parts of ALL questions in this booklet. If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question. Check that this booklet has pages 2–13 in the correct order and that none of these pages is blank. YOU MUST HAND THIS BOOKLET TO YOUR TEACHER AT THE END OF THE ALLOTTED TIME. |For Assessor’s |Achievement Criteria | | |use only | | | |Achievement |Achievement |Achievement | | |with Merit |with Excellence ......

Words: 976 - Pages: 4

Free Essay


...Roger Truong Week 4 Physics Notes Experiment 1 * Rise and fall is pressure in the sound wave makes the flame move * The rise and fall in pressure makes the click sound * The rise and fall in the disturbance to what brings the sound to your ear * The square waves to what makes the flame move and bring the sound to your ear * The air molecules don’t move the disturbance does * For a 0.5 Hz your hear a click and the flame moves and resets * For 100 Hz the flame remains displaced and doesn’t recover * The transition from a click to a tone is between 20 and 50 Hz Reflection * Change in direction of a wave at an interference between two media wave returns into media from which it originated form. Wave Refraction * Change in direction of a wave when it passes from one medium to another caused by the different speeds of a wave * When water moves into different depths Wave Diffraction * Bending waves when they encounter an obstacle Absorption of waves * Reduction of energy in wave consumed by medium which it travels. * The main cause of absorption is Viscosity Interference * Two or more waves form coming together to make up a new wave Resonance * Tendency of a system to oscillate at a large amplitude at certain frequencies * Tendency to magnify a sound * The difference between an acoustic and electric guitar Wave Motion in Space and Time * Wave Motion in Space * Horizontal......

Words: 323 - Pages: 2

Free Essay

Physics Collisions

...Throughout our previous unit, we described the constant velocity of objects in motion. That laid the basis for this next unit, where we will be studying why and how the object moves the way it does, specifically the "push" or "pull" of force. The heavier cart in a same-direction elastic collision seems to push the lighter cart, which causes an increase in speed for the lighter cart. Although we may have brushed on the surface of movement, this unit will pave the path for further investigation on velocity as well as momentum. According to today's lab, it is possible to measure the mass of the carts and then multiple the mass by the velocity to determine momentum. These two things will be related to almost everything that we will be doing in physics, as how can we study how things move if we don't know how they're...

Words: 279 - Pages: 2

Free Essay


...Computational Condensed Matter 4 (2015) 32e39 Contents lists available at ScienceDirect Computational Condensed Matter journal homepage: Regular article Putting DFT to the trial: First principles pressure dependent analysis on optical properties of cubic perovskite SrZrO3 Ghazanfar Nazir a, b, *, Afaq Ahmad b, Muhammad Farooq Khan a, Saad Tariq b a b Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747, South Korea Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan a r t i c l e i n f o a b s t r a c t Article history: Received 8 July 2015 Received in revised form 21 July 2015 Accepted 27 July 2015 Available online 31 July 2015 Here we report optical properties for cubic phase Strontium Zirconate (SrZrO3) at different pressure values (0, 40, 100, 250 and 350) GPa under density functional theory (DFT) using Perdew-Becke-Johnson (PBE-GGA) as exchange-correlation functional. In this article we first time report all the optical properties for SrZrO3. The real and imaginary dielectric functions has investigated along with reflectivity, energy loss function, optical absorption coefficient, optical conductivity, refractive index and extinction coefficient under hydrostatic pressure. We demonstrated the indirect and direct bandgap behavior of SrZrO3 at (0) GPa and (40, 100, 250 and 350) GPa respectively. In addition, static......

Words: 5414 - Pages: 22

Free Essay

The Physics of Bull Riding

...Rodeo is a sport that came about by everyday work being made into competition. Every event in rodeo has a practical purpose; all but one that is. There is no practical reason to get on a bull; only the thrills, chills, and rush of excitement. It¡¦s more than a challenge between riders. It¡¦s a challenge between man and beast. Legendary cowboy Larry Mahan had an even different way of looking at it. He said, ¡§It¡¦s not a challenge with the animal but with the weakness in one¡¦s self¡¨. At any rate, it¡¦s all about the challenge. The challenge is simple; stay on the bull¡¦s back for eight seconds while keeping one hand fee from contact with the bull or your own body. Well it sounds simple anyways. Bull riding is a difficult challenge that involves overcoming many forces. Bulls will try just about anything to get a rider off their back. This includes raring, kicking, spinning, jumping, belly rolls, and some unintended moves such as stumbling and falling down. All the moves produce some sort of force the rider has to overcome. Fortunately ... in great shape. Much energy is spent in the course of a bull ride. The energy is equal to the force applied times the distance traveled. The forces are great and as fast as a bull can move they can cover a lot of ground in eight seconds. This adds up to a lot of energy being expended. Bull riding can be loads of fun. But it is definitely no...

Words: 261 - Pages: 2

Free Essay

Atomic Physics

...Constant and the Bohr Magneton 9/21/2015 Abstract In this lab, the Rydberg constant is found by observing the Balmer Series. With the experiment below, a Rydberg Constant was found to be 10116000 meters-1 with a 7.82% error. The Bohr Magneton is also found, and a value of 6.03*10-24 JT was obtained with a large error. The error can arise from each optical equipment having some fundamental error in its creation. Introduction With the help of atomic physics, quantum mechanics, and optics, the Rydberg constant and the Bohr magneton will be calculated in this experiment. The Rydberg constant is one of the most important constants in atomic physics because of its relation to other fundamental constants in atomic physics, such as the speed of light or Planck’s constant [1]. The Bohr Magneton tells us the magnetic moment of an electron by its angular momentum [2]. Attempting to calculate the Rydberg constant and the Bohr Magneton will inadvertently teach the basis of quantum mechanics, optics, and atomic physics. Atomic spectra of hydrogen, mercury, and helium will be studied in detail along with the Zeeman Effect. Theory In quantum mechanics, labeling often times helps discern descriptions of certain events. To describe the movement and trajectories of an electron in an atom, scientists use quantum numbers to label what is going on. The principal quantum number n, tells the energy level of the electron and the distance from the nucleus. The angular momentum......

Words: 4148 - Pages: 17

Free Essay


...Student guide: Name:____________________ Discuss the words in the box. o review we have already covered and new you will learn today Guiding Question: How do the properties of amplitude and frequency affect wavelength? Start: [pic] 1. Click on the first link 2. For this activity you will be collecting data to explore three properties of a wave. 3. [pic] Explore the simulation with your partner. Be sure to click on all the buttons. 4. For the first set of investigations, we will look at amplitude. • you need to be on [pic] [pic] • The rest of your screen should be set up like this: [pic] [pic]Look over the data table, on the back, and discuss how get the data you need. [pic] moves the wave. |Amplitude setting | Height of wave at the start |Distance ring moves on pole (end) | | |(be sure your ruler is lined up correctly) | | |100 |17 cm |2 cm | |50 |9 cm |1 cm | |5 |1 cm ...

Words: 755 - Pages: 4