# Rint1

In: Science

Submitted By koebler1313
Words 1929
Pages 8
Problem Statement Do you get more popped and un-popped kernels from the expensive popcorn compared to the cheaper store brand popcorn?

Relevance of your testable question Everyone has heard of microwave popcorn. Microwave popcorn is very convenient, and comes in many different brands. Times are very tough in this economy, and many people are trying to find ways to save money. Could you save money by buying the cheaper brand of popcorn, or should you buy the expensive brand of popcorn?

Literature Review I found one experiment done by Sean Boyd. He used 3 bags of 5 different brands of popcorn. He cooked all 5 brands using the same microwave, and the same amount of time. He was looking at how many un-popped kernels there were in each different brand. He had concluded that Act II was the best brand as far as un-popped kernels. I found another experiment named, “Which brand of popcorn pops the most.” There was a slight difference in his experiment from my experiment. In this experiment he was using regular popcorn instead of microwave popcorn. He had taken 100 kernels of each brand, and popped those in a popcorn popper. He then counted all the kernels. He counted the ones that popped plus the ones that didn’t. He then came to the conclusion that Act II was the best popcorn based on price and popped kernels.

Experimental Design Steps
Step 1) Gather all materials. 3 bags of Orville Redenbacher’s microwave popcorn, 3 bags of Act II microwave popcorn, and 3 bags of Kroger brand microwave popcorn, microwave, and 2 large bowls. 2) Pop all 9 bags of microwave popcorn for 2 minutes and 15 seconds. 3) Count all popped and un-popped kernels in each bag. 4) Record all data in the data chart. 5) Find percentage of popped and un-popped kernels in each bag. 6) Find percentage for the total average of the 3 different brands.…...

### Similar Documents

Free Essay

#### Physics

...elektromagnetik, yaitu µν Lµν ΠIm(EM) = AEM R1 − BEM R2 , ν µν dengan REM1 = ΠL + ΠT , REM2 = ΠT , 1 2 2 2 AW (bqµ − a) + bqµ qµ , 2 1 2 2 bqµ + a qµ , BEM = 2 2 2 a = 4(fmν + g1ν ), f 2 + g2 b = 2ν 2 2ν . me AEM = Penurunan lengkap ada pada lampiran J. (2.60) (c) Kontraksi Lµν ΠIm Interferensi µν ν Selanjutnya dengan menggunakan tensor neutrino untuk interferensi [persamaan (2.54)] dan berdasarkan polarisasi elektronnya dapat diperoleh total kontraksi, sebagai µν Im(V−A) Lν ΠIm(INT) = CV Lµν ΠImV + CA Lµν Πµν . µν ν µν ν (2.61) Dengan menggunakan persamaan (2.55) dan persamaan (2.56) kontraksi Lµν ΠIm µν ν interferensi dapat ditulis sebagai 2 Lµν ΠIm(INT) = −4qµ a (AIN T R1 + R2 + BIN T R3 ) , ˜ ν µν (2.62) 15 dengan RINT1 = CV (ΠL + ΠT ), RINT2 = CV ΠT , RINT3 = CA ΠV A , 1 2 2E(E − q0 ) + 2 qµ AINT = AW = , |q|2 BINT = BW = 2E − q0 , a = fmν + g1ν . ˜ Penurunan lengkap dapat dilihat pada lampiran K. 16 Bab 3 Hasil dan Pembahasan Dengan diketahui kontraksi Lµν ΠIm dari interaksi lemah, interaksi elektromagµν netik dan interferensi maka dapat diperoleh total tampang lintang diﬀerensial per volume untuk hamburan quasi-elastik neutrino-elektron dengan gas elektron termampatkan, yaitu 1 d3 σ V d2 Ω dEν = − × +   1 Eν 16π 2 Eν GF √ 2 2 Lµν ΠIm(W) ν µν 4πα + q2 2 Lµν ΠIm(EM) ν µν (3.1) 8GF πα µν Im(INT) √ Lν Πµν . q2 2 Parameter yang digunakan adalah sebagai berikut: • Konstanta kopling interaksi lemah, GF = 1, 166 ×......

Words: 11175 - Pages: 45