Free Essay

Telecommunication

In: Computers and Technology

Submitted By kdja
Words 7569
Pages 31
TELECOMMUNICATIONS

Telecommunication is communication at a distance by technological means, particularly through electrical signals or electromagnetic waves. Due to the many different technologies involved, the word is often used in a plural form, as telecommunications.
Early telecommunication technologies included visual signals, such as beacons, smoke signals, semaphore telegraphs, signal flags, and optical heliographs. Other examples of pre-modern telecommunications include audio messages such as coded drumbeats, lung-blown horns, and loud whistles. Electrical and electromagnetic telecommunication technologies include telegraph, telephone, and teleprinter, networks, radio, microwave transmission, fiber optics, communications satellites and the Internet.
A revolution in wireless telecommunications began in the 1900s with pioneering developments in radio communications by Guglielmo Marconi. Marconi won the Nobel Prize in Physics in 1909 for his efforts. Other highly notable pioneering inventors and developers in the field of electrical and electronic telecommunications include Charles Wheatstone and Samuel Morse (telegraph), Alexander Graham Bell (telephone), Edwin Armstrong, and Lee de Forest (radio), as well as John Logie Baird and Philo Farnsworth (television).
The world's effective capacity to exchange information through two-way telecommunication networks grew from 281 petabytes of (optimally compressed) information in 1986, to 471 petabytes in 1993, to 2.2 (optimally compressed) exabytes in 2000, and to 65 (optimally compressed) exabytes in 2007. This is the informational equivalent of two newspaper pages per person per day in 1986, and six entire newspapers per person per day by 2007. Given this growth, telecommunications play an increasingly important role in the world economy and the global telecommunications industry was about a $4.7 trillion sector in 2012. The service revenue of the global telecommunications industry was estimated to be $1.5 trillion in 2010, corresponding to 2.4% of the world’s gross domestic product (GDP).

Etymology
The word telecommunication was adapted from the Spanish word Telecom. It is a compound of the Greek prefix tele- (τηλε-), meaning "distant", and the Latin communicare, meaning "to share".The French word télécommunication was first invented in the French Grande Ecole "Telecom ParisTech" formerly known as "Ecole nationale superieure des telecommunications" in 1904 by the French engineer and novelist Édouard Estaunié.

Ancient systems
Greek hydraulic semaphore systems were used as early as the 4th century BC. The hydraulic semaphores, which worked with water filled vessels and visual signals, functioned as optical telegraphs. However, they could only utilize a very limited range of pre-determined messages, and as with all such optical telegraphs could only be deployed during good visibility conditions.
During the Middle Ages, chains of beacons were commonly used on hilltops as a means of relaying a signal. Beacon chains suffered the drawback that they could only pass a single bit of information, so the meaning of the message such as "the enemy has been sighted" had to be agreed upon in advance. One notable instance of their use was during the Spanish Armada, when a beacon chain relayed a signal from Plymouth to London that signaled the arrival of the Spanish warships.

Systems since the Middle Ages

In 1792, Claude Chappe, a French engineer, built the first fixed visual telegraphy system (or semaphore line) between Lille and Paris.[16] However semaphore systems suffered from the need for skilled operators, and expensive towers at intervals of 10–30 kilometres (6–20 mi). As a result of competition from the electrical telegraph, Europe's last commercial semaphore line in Sweden was abandoned in 1880.
Telegraph and telephone
Experiments on communication with electricity, initially unsuccessful, started in about 1726. Scientists including Laplace, Ampère, and Gauss were involved. A practical electrical telegraph was proposed in January 1837 by William Fothergill Cooke, who considered it an improvement on the existing "electromagnetic telegraph"; an improved five-needle, six-wire system developed in partnership with Charles Wheatstone entered commercial use in 1838, Early telegraphs used several wires connected to a number of indicator needles.
Businessman Samuel F.B. Morse and physicist Joseph Henry of the United States developed their own, simpler version of the electrical telegraph, independently. Morse successfully demonstrated this system on September 2, 1837. Morse's most important technical contribution to this telegraph was the simple and highly efficient Morse Code co-developed with his associate Alfred Vail, which was an important advance over Wheat stone's more complicated and expensive system, and required just two wires. The communications efficiency of the Morse Code preceded that of the Huffman code in digital communications by over 100 years, but Morse and Vail developed the code purely empirically, with shorter codes for more frequent letters.
The first permanent transatlantic telegraph cable was successfully completed on 27 July 1866, allowing transatlantic electrical communication for the first time. An earlier transatlantic cable had operated for a few months in 1859, and among other things, it carried messages of greeting back and forth between President James Buchanan of the United States and Queen Victoria of the United Kingdom.
However that first transatlantic cable soon failed, and the project to lay a replacement line was delayed for five years by the American Civil War. The first transatlantic telephone cable (which incorporated hundreds of electronic amplifiers) was not operational until 1956, only six years before the first commercial telecommunications satellite, Telstar, was launched into space.
The conventional telephone now in use worldwide was first patented by Alexander Graham Bell in March 1876. That first patent by Bell was the master patent of the telephone, from which all other patents for electric telephone devices and features flowed. Credit for the invention of the electric telephone has been frequently disputed, and new controversies over the issue have arisen from time-to-time. As with other great inventions such as radio, television, the light bulb, and the digital computer, there were several inventors who did pioneering experimental work on voice transmission over a wire, who then improved on each other's ideas. However, the key innovators were Alexander Graham Bell and Gardiner Greene Hubbard, who created the first telephone company, the Bell Telephone Company in the United States, which later evolved into American Telephone & Telegraph (AT&T), at times the world's largest phone company.
The first commercial telephone services were set up in 1878 and 1879 on both sides of the Atlantic in the cities of New Haven, Connecticut, and London, England.

Radio and television

In 1832, James Lindsay gave a classroom demonstration of wireless telegraphy via conductive water to his students. By 1854, he was able to demonstrate a transmission across the Firth of Tay from Dundee, Scotland, to Woodhaven, a distance of about two miles (3 km), again using water as the transmission medium. In December 1901, Guglielmo Marconi established wireless communication between St. John's, Newfoundland and Poldhu, Cornwall (England), earning him the Nobel Prize in Physics for 1909, one which he shared with Karl Braun.
On March 25, 1925, John Logie Baird of Scotland was able to demonstrate the transmission of moving pictures at the Selfridge's department store in London, England. Baird's system relied upon the fast-rotating Nipkow disk, and thus it became known as the mechanical television. It formed the basis of experimental broadcasts done by the British Broadcasting Corporation beginning September 30, 1929. However, for most of the 20th century, television systems were designed around the cathode ray tube, invented by Karl Braun. The first version of such an electronic television to show promise was produced by Philo Farnsworth of the United States, and it was demonstrated to his family in Idaho on September 7, 1927.
Television, however, is not solely a technology, limited to its basic and practical application. It functions both as an appliance, and also as a means for social storytelling and message dissemination. It is a cultural tool that provides a communal experience of receiving information and experiencing fantasy. It acts as a “window to the world” by bridging audiences from all over through programming of stories, triumphs, and tragedies that are outside of personal experiences.

Video telephony
The development of video telephony involved the historical development of several technologies which enabled the use of live video in addition to voice telecommunications. The concept of video telephony was first popularized in the late 1870s in both the United States and Europe, although the basic sciences to permit its very earliest trials would take nearly a half century to be discovered. This was first embodied in the device which came to be known as the video telephone, or videophone, and it evolved from intensive research and experimentation in several telecommunication fields, notably telegraphy, telephony, radio, and television.
The development of the crucial video technology first started in the latter half of the 1920s in the United Kingdom and the United States, spurred notably by John Logie Baird and AT&T's Bell Labs. This occurred in part, at least by AT&T, to serve as an adjunct supplementing the use of the telephone. A number of organizations believed that video telephony would be superior to plain voice communications. However video technology was to be deployed in analogue television broadcasting long before it could become practical—or popular—for videophones.
Video telephony developed in parallel with conventional voice telephone systems from the mid-to-late 20th century. Only in the late 20th century with the advent of powerful video codec’s and high-speed broadband did it become a practical technology for regular use. With the rapid improvements and popularity of the Internet, it became widespread through the use of videoconferencing and webcams, which frequently utilize Internet telephony, and in business, where telepresence technology has helped reduce the need to travel.

Satellite
The first U.S. satellite to relay communications was Project SCORE in 1958, which used a tape recorder to store and forward voice messages. It was used to send a Christmas greeting to the world from U.S. President Dwight D. Eisenhower. In 1960 NASA launched an Echo satellite; the 100-foot (30 m) aluminized PET film balloon served as a passive reflector for radio communications. Courier 1B, built by Philco, also launched in 1960, was the world's first active repeater satellite.
Telstar was the first active, direct relay commercial communications satellite. Belonging to AT&T as part of a multi-national agreement between AT&T, Bell Telephone Laboratories, NASA, the British General Post Office, and the French National PTT (Post Office) to develop satellite communications, it was launched by NASA from Cape Canaveral on July 10, 1962, the first privately sponsored space launch. Relay 1 was launched on December 13, 1962, and became the first satellite to broadcast across the Pacific on November 22, 1963.
The first and historically most important application for communication satellites was in intercontinental long distance telephony. The fixed Public Switched Telephone Network relays telephone calls from land line telephones to an earth station, where they are then transmitted to a receiving satellite dish via a geostationary satellite in Earth orbit. Improvements in submarine communications cables, through the use of fiber-optics, caused some decline in the use of satellites for fixed telephony in the late 20th century, but they still exclusively service remote islands such as Ascension Island, Saint Helena, Diego Garcia, and Easter Island, where no submarine cables are in service. There are also some continents and some regions of countries where landline telecommunications are rare to nonexistent, for example Antarctica, plus large regions of Australia, South America, Africa, Northern Canada, China, Russia and Greenland.
After commercial long distance telephone service was established via communication satellites, a host of other commercial telecommunications were also adapted to similar satellites starting in 1979, including mobile satellite phones, satellite radio, satellite television and satellite Internet access. The earliest adaption for most such services occurred in the 1990s as the pricing for commercial satellite transponder channels continued to drop significantly.

Digital cinema
Realization and demonstration, on October 29, 2001, of the first digital cinema transmission by satellite in Europe of a feature film by Bernard Pauchon, Alain Lorentz, Raymond Melwig, Philippe Binant.

Computer networks and the Internet
On 11 September 1940, George Stibitz was able to transmit problems using teleprinter to his Complex Number Calculator in New York and receive the computed results back at Dartmouth College in New Hampshire. This configuration of a centralized computer or mainframe computer with remote "dumb terminals" remained popular throughout the 1950s and into the 1960s. However, it was not until the 1960s that researchers started to investigate packet switching — a technology that allows chunks of data to be sent between different computers without first passing through a centralized mainframe. A four-node network emerged on December 5, 1969. This network soon became the ARPANET, which by 1981 would consist of 213 nodes.
ARPANET's development centred around the Request for Comment process and on 7 April 1969, RFC 1 was published. This process is important because ARPANET would eventually merge with other networks to form the Internet, and many of the communication protocols that the Internet relies upon today were specified through the Request for Comment process. In September 1981, RFC 791introduced the Internet Protocol version 4 (IPv4) and RFC 793 introduced the Transmission Control Protocol (TCP) — thus creating the TCP/IP protocol that much of the Internet relies upon today.
However, not all important developments were made through the Request for Comment process. Two popular link protocols for local area networks (LANs) also appeared in the 1970s. A patent for the token ring protocol was filed by Olof Soderblom on October 29, 1974, and a paper on the Ethernet protocol was published by Robert Metcalfe and David Boggs in the July 1976 issue of Communications of the ACM. The Ethernet protocol had been inspired by the ALOHAnet protocol which had been developed by electrical engineering researchers at the University of Hawaii.
-------------------------------------------------

-------------------------------------------------
Key concepts
A number of key concepts reoccur throughout the literature on modern telecommunication systems. Some of these concepts are discussed below.

Basic elements
A basic telecommunication system consists of three primary units that are always present in some form: * A transmitter that takes information and converts it to a signal. * A transmission medium, also called the "physical channel" that carries the signal. An example of this is the "free space channel". * A receiver that takes the signal from the channel and converts it back into usable information.
For example, in a radio broadcasting station the station's large power amplifier is the transmitter; and the broadcasting antenna is the interface between the power amplifier and the "free space channel". The free space channel is the transmission medium; and the receiver's antenna is the interface between the free space channel and the receiver. Next, the radio receiver is the destination of the radio signal, and this is where it is converted from electricity to sound for people to listen to.
Sometimes, telecommunication systems are "duplex" (two-way systems) with a single box of electronics working as both a transmitter and a receiver, or a transceiver. For example, a cellular telephone is a transceiver. The transmission electronics and the receiver electronics in a transceiver are actually quite independent of each other. This can be readily explained by the fact that radio transmitters contain power amplifiers that operate with electrical powers measured in the watts or kilowatts, but radio receivers deal with radio powers that are measured in the microwatts or nanowatts. Hence, transceivers have to be carefully designed and built to isolate their high-power circuitry and their low-power circuitry from each other.
Telecommunication over fixed lines is called point-to-point communication because it is between one transmitter and one receiver. Telecommunication through radio broadcasts is called broadcast communication because it is between one powerful transmitter and numerous low-power but sensitive radio receivers.
Telecommunications in which multiple transmitters and multiple receivers have been designed to cooperate and to share the same physical channel are called multiplex systems. The sharing of physical channels using multiplexing often gives very large reductions in costs. Multiplexed systems are laid out in telecommunication networks, and the multiplexed signals are switched at nodes through to the correct destination terminal receiver.

Analogue versus digital communications
Communications signals can be either by analogue signals or digital signals. There are analogue communication systems and digital communication systems. For an analogue signal, the signal is varied continuously with respect to the information. In a digital signal, the information is encoded as a set of discrete values (for example, a set of ones and zeros). During the propagation and reception, the information contained in analogue signals will inevitably be degraded by undesirable physical noise. (The output of a transmitter is noise-free for all practical purposes.) Commonly, the noise in a communication system can be expressed as adding or subtracting from the desirable signal in a completely random way. This form of noise is called additive noise, with the understanding that the noise can be negative or positive at different instants of time. Noise that is not additive noise is a much more difficult situation to describe or analyze, and these other kinds of noise will be omitted here.
On the other hand, unless the additive noise disturbance exceeds a certain threshold, the information contained in digital signals will remain intact. Their resistance to noise represents a key advantage of digital signals over analogue signals.

Telecommunication networks
A communications network is a collection of transmitters, receivers, and communications channels that send messages to one another. Some digital communications networks contain one or more routers that work together to transmit information to the correct user. An analogue communications network consists of one or more switches that establish a connection between two or more users. For both types of network, repeaters may be necessary to amplify or recreate the signal when it is being transmitted over long distances. This is to combat attenuation that can render the signal indistinguishable from the noise. Another advantage of digital systems over analogue is that their output is easier to store in memory, i.e. two voltage states (high and low) are easier to store than a continuous range of states.

Communication channels
The term "channel" has two different meanings. In one meaning, a channel is the physical medium that carries a signal between the transmitter and the receiver. Examples of this include the atmosphere for sound communications, glass optical fibers for some kinds of optical communications, coaxial cables for communications by way of the voltages and electric currents in them, and free space for communications using visible light, infrared waves, ultraviolet light, and radio waves. This last channel is called the "free space channel". The sending of radio waves from one place to another has nothing to do with the presence or absence of an atmosphere between the two. Radio waves travel through a perfect vacuum just as easily as they travel through air, fog, clouds, or any other kind of gas besides air.
The other meaning of the term "channel" in telecommunications is seen in the phrase communications channel, which is a subdivision of a transmission medium so that it can be used to send multiple streams of information simultaneously. For example, one radio station can broadcast radio waves into free space at frequencies in the neighbourhood of 94.5 MHz (megahertz) while another radio station can simultaneously broadcast radio waves at frequencies in the neighbourhood of 96.1 MHz. Each radio station would transmit radio waves over a frequency bandwidth of about 180 kHz (kilohertz), centered at frequencies such as the above, which are called the "carrier frequencies". Each station in this example is separated from its adjacent stations by 200 kHz, and the difference between 200 kHz and 180 kHz (20 kHz) is an engineering allowance for the imperfections in the communication system.
In the example above, the "free space channel" has been divided into communications channels according to frequencies, and each channel is assigned a separate frequency bandwidth in which to broadcast radio waves. This system of dividing the medium into channels according to frequency is called "frequency-division multiplexing" (FDM).
Another way of dividing a communications medium into channels is to allocate each sender a recurring segment of time (a "time slot", for example, 20 milliseconds out of each second), and to allow each sender to send messages only within its own time slot. This method of dividing the medium into communication channels is called "time-division multiplexing" (TDM), and is used in optical fiber communication. Some radio communication systems use TDM within an allocated FDM channel. Hence, these systems use a hybrid of TDM and FDM.

Modulation
The shaping of a signal to convey information is known as modulation. Modulation can be used to represent a digital message as an analogue waveform. This is commonly called "keying" – a term derived from the older use of Morse Code in telecommunications – and several keying techniques exist (these include phase-shift keying, frequency-shift keying, and amplitude-shift keying). The "Bluetooth" system, for example, uses phase-shift keying to exchange information between various devices. In addition, there are combinations of phase-shift keying and amplitude-shift keying which is called (in the jargon of the field) "quadrature amplitude modulation" (QAM) that are used in high-capacity digital radio communication systems.
Modulation can also be used to transmit the information of low-frequency analogue signals at higher frequencies. This is helpful because low-frequency analogue signals cannot be effectively transmitted over free space. Hence the information from a low-frequency analogue signal must be impressed into a higher-frequency signal (known as the "carrier wave") before transmission. There are several different modulation schemes available to achieve this [two of the most basic being amplitude modulation (AM) and frequency modulation (FM)]. An example of this process is a disc jockey's voice being impressed into a 96 MHz carrier wave using frequency modulation (the voice would then be received on a radio as the channel "96 FM"). In addition, modulation has the advantage of being about to use frequency division multiplexing (FDM).
-------------------------------------------------

-------------------------------------------------
Society and telecommunication
Telecommunication has a significant social, cultural and economic impact on modern society. In 2008, estimates placed the telecommunication industry's revenue at $4.7 trillion or just under 3 percent of the gross world product (official exchange rate). Several following sections discuss the impact of telecommunication on society.

Economic impact

Microeconomics
On the microeconomic scale, companies have used telecommunications to help build global business empires. This is self-evident in the case of online retailer Amazon.com but, according to academic Edward Lenert, even the conventional retailer Wal-Mart has benefited from better telecommunication infrastructure compared to its competitors.[41] In cities throughout the world, home owners use their telephones to order and arrange a variety of home services ranging from pizza deliveries to electricians. Even relatively poor communities have been noted to use telecommunication to their advantage. In Bangladesh's Narshingdi district, isolated villagers use cellular phones to speak directly to wholesalers and arrange a better price for their goods. In Côte d'Ivoire, coffee growers share mobile phones to follow hourly variations in coffee prices and sell at the best price.

Macroeconomics
On the macroeconomic scale, Lars-Hendrik Röller and Leonard Waverman suggested a causal link between good telecommunication infrastructure and economic growth. Few dispute the existence of a correlation although some argue it is wrong to view the relationship as causal.
Because of the economic benefits of good telecommunication infrastructure, there is increasing worry about the inequitable access to telecommunication services amongst various countries of the world—this is known as the digital divide. A 2003 survey by theInternational Telecommunication Union (ITU) revealed that roughly a third of countries have fewer than one mobile subscription for every 20 people and one-third of countries have fewer than one land-line telephone subscription for every 20 people. In terms of Internet access, roughly half of all countries have fewer than one out of 20 people with Internet access. From this information, as well as educational data, the ITU was able to compile an index that measures the overall ability of citizens to access and use information and communication technologies. Using this measure, Sweden, Denmark and Iceland received the highest ranking while the African countries Nigeria, Burkina Faso and Mali received the lowest.

Social impact
Telecommunication has played a significant role in social relationships. Nevertheless devices like the telephone system were originally advertised with an emphasis on the practical dimensions of the device (such as the ability to conduct business or order home services) as opposed to the social dimensions. It was not until the late 1920s and 1930s that the social dimensions of the device became a prominent theme in telephone advertisements. New promotions started appealing to consumers' emotions, stressing the importance of social conversations and staying connected to family and friends.
Since then the role that telecommunications has played in social relations has become increasingly important. In recent years, the popularity of social networking sites has increased dramatically. These sites allow users to communicate with each other as well as post photographs, events and profiles for others to see. The profiles can list a person's age, interests, sexual preference and relationship status. In this way, these sites can play important role in everything from organising social engagements to courtship.[
Prior to social networking sites, technologies like short message service (SMS) and the telephone also had a significant impact on social interactions. In 2000, market research group Ipsos MORI reported that 81% of 15 to 24 year-old SMS users in the United Kingdom had used the service to coordinate social arrangements and 42% to flirt.

Other impacts
In cultural terms, telecommunication has increased the public's ability to access music and film. With television, people can watch films they have not seen before in their own home without having to travel to the video store or cinema. With radio and the Internet, people can listen to music they have not heard before without having to travel to the music store.
Telecommunication has also transformed the way people receive their news. A survey led in 2006 by the non-profit Pew Internet and American Life Project found that when just over 3,000 people living in the United States were asked where they got their news "yesterday", more people said television or radio than newspapers. The results are summarised in the following table (the percentages add up to more than 100% because people were able to specify more than one source). Local TV | National TV | Radio | Local paper | Internet | National paper | 59% | 47% | 44% | 38% | 23% | 12% |
Telecommunication has had an equally significant impact on advertising. TNS Media Intelligence reported that in 2007, 58% of advertising expenditure in the United States was spent on mediums that depend upon telecommunication. The results are summarised in the following table. | Internet | Radio | Cable TV | Syndicated TV | Spot TV | Network TV | Newspaper | Magazine | Outdoor | Total | Percent | 7.6% | 7.2% | 12.1% | 2.8% | 11.3% | 17.1% | 18.9% | 20.4% | 2.7% | 100% | Dollars | $11.31 billion | $10.69 billion | $18.02 billion | $4.17 billion | $16.82 billion | $25.42 billion | $28.22 billion | $30.33 billion | $4.02 billion | $149 billion |
-------------------------------------------------

-------------------------------------------------
Telecommunication and government
Many countries have enacted legislation which conforms to the International Telecommunication Regulations established by the International Telecommunication Union (ITU), which is the "leading UN agency for information and communication technology issues." In 1947, at the Atlantic City Conference, the ITU decided to "afford international protection to all frequencies registered in a new international frequency list and used in conformity with the Radio Regulation." According to the ITU's Radio Regulations adopted in Atlantic City, all frequencies referenced in the International Frequency Registration Board, examined by the board and registered on the International Frequency List "shall have the right to international protection from harmful interference."
From a global perspective, there have been political debates and legislation regarding the management of telecommunication and broadcasting. The history of broadcasting discusses some debates in relation to balancing conventional communication such as printing and telecommunication such as radio broadcasting. The onset of World War II brought on the first explosion of international broadcasting propaganda. Countries, their governments, insurgents, terrorists, and militiamen have all used telecommunication and broadcasting techniques to promote propaganda. Patriotic propaganda for political movements and colonization started the mid-1930s. In 1936, the BBC broadcast propaganda to the Arab World to partly counter similar broadcasts from Italy, which also had colonial interests in North Africa.
Modern insurgents, such as those in the latest Iraq war, often use intimidating telephone calls, SMSs and the distribution of sophisticated videos of an attack on coalition troops within hours of the operation. "The Sunni insurgents even have their own television station, Al-Zawraa, which while banned by the Iraqi government, still broadcasts from Erbil, Iraqi Kurdistan, even as coalition pressure has forced it to switch satellite hosts several times."
-------------------------------------------------

Worldwide equipment sales
According to data collected by Gartner and Ars Technical sales of main consumer's telecommunication equipment worldwide in millions of units was: Equipment / year | 1975 | 1980 | 1985 | 1990 | 1994 | 1996 | 1998 | 2000 | 2002 | 2004 | 2006 | 2008 | Computers | 0 | 1 | 8 | 20 | 40 | 75 | 100 | 135 | 130 | 175 | 230 | 280 | Cell phones | N/A | N/A | N/A | N/A | N/A | N/A | 180 | 400 | 420 | 660 | 830 | 970 |

Telephone
In an analogue telephone network, the caller is connected to the person he wants to talk to by switches at various telephone exchanges. The switches form an electrical connection between the two users and the setting of these switches is determined electronically when the caller dials the number. Once the connection is made, the caller's voice is transformed to an electrical signal using a small microphone in the caller's handset. This electrical signal is then sent through the network to the user at the other end where it is transformed back into sound by a small speaker in that person's handset. There is a separate electrical connection that works in reverse, allowing the users to converse.
The landline telephones in most residential homes are analog—that is, the speaker's voice directly determines the signal's voltage. Although short-distance calls may be handled from end-to-end as analog signals, increasingly telephone service providers are transparently converting the signals to digital for transmission before converting them back to analog for reception. The advantage of this is that digitized voice data can travel side-by-side with data from the Internet and can be perfectly reproduced in long distance communication (as opposed to analog signals that are inevitably impacted by noise).
Mobile phones have had a significant impact on telephone networks. Mobile phone subscriptions now outnumber fixed-line subscriptions in many markets. Sales of mobile phones in 2005 totalled 816.6 million with that figure being almost equally shared amongst the markets of Asia/Pacific (204 m), Western Europe (164 m), CEMEA (Central Europe, the Middle East and Africa) (153.5 m), North America (148 m) and Latin America (102 m). In terms of new subscriptions over the five years from 1999, Africa has outpaced other markets with 58.2% growth. Increasingly these phones are being serviced by systems where the voice content is transmitted digitally such as GSM or W-CDMA with many markets choosing to depreciate analog systems such as AMPS.
There have also been dramatic changes in telephone communication behind the scenes. Starting with the operation of TAT-8 in 1988, the 1990s saw the widespread adoption of systems based on optical fibers. The benefit of communicating with optic fibers is that they offer a drastic increase in data capacity. TAT-8 itself was able to carry 10 times as many telephone calls as the last copper cable laid at that time and today's optic fibre cables are able to carry 25 times as many telephone calls as TAT-8. This increase in data capacity is due to several factors: First, optic fibres are physically much smaller than competing technologies. Second, they do not suffer from crosstalk which means several hundred of them can be easily bundled together in a single cable. Lastly, improvements in multiplexing have led to an exponential growth in the data capacity of a single fibre.
Assisting communication across many modern optic fibre networks is a protocol known as Asynchronous Transfer Mode (ATM). The ATM protocol allows for the side-by-side data transmission mentioned in the second paragraph. It is suitable for public telephone networks because it establishes a pathway for data through the network and associates a traffic contract with that pathway. The traffic contract is essentially an agreement between the client and the network about how the network is to handle the data; if the network cannot meet the conditions of the traffic contract it does not accept the connection. This is important because telephone calls can negotiate a contract so as to guarantee themselves a constant bit rate, something that will ensure a caller's voice is not delayed in parts or cut off completely. There are competitors to ATM, such as Multiprotocol Label Switching (MPLS), that perform a similar task and are expected to supplant ATM in the future.
Radio and television

In a broadcast system, the central high-powered broadcast tower transmits a high-frequency electromagnetic wave to numerous low-powered receivers. The high-frequency wave sent by the tower is modulated with a signal containing visual or audio information. The receiver is then tuned so as to pick up the high-frequency wave and a demodulator is used to retrieve the signal containing the visual or audio information. The broadcast signal can be either analog (signal is varied continuously with respect to the information) or digital (information is encoded as a set of discrete values).
The broadcast media industry is at a critical turning point in its development, with many countries moving from analog to digital broadcasts. This move is made possible by the production of cheaper, faster and more capable integrated circuits. The chief advantage of digital broadcasts is that they prevent a number of complaints common to traditional analog broadcasts. For television, this includes the elimination of problems such as snowy pictures, ghosting and other distortion. These occur because of the nature of analog transmission, which means that perturbations due to noise will be evident in the final output. Digital transmission overcomes this problem because digital signals are reduced to discrete values upon reception and hence small perturbations do not affect the final output. In a simplified example, if a binary message 1011 was transmitted with signal amplitudes [1.0 0.0 1.0 1.0] and received with signal amplitudes [0.9 0.2 1.1 0.9] it would still decode to the binary message 1011 — a perfect reproduction of what was sent. From this example, a problem with digital transmissions can also be seen in that if the noise is great enough it can significantly alter the decoded message. Using forward error correction a receiver can correct a handful of bit errors in the resulting message but too much noise will lead to incomprehensible output and hence a breakdown of the transmission.
In digital television broadcasting, there are three competing standards that are likely to be adopted worldwide. These are the ATSC,DVB and ISDB standards; the adoption of these standards thus far is presented in the captioned map. All three standards use MPEG-2for video compression. ATSC uses Dolby Digital AC-3 for audio compression, ISDB uses Advanced Audio Coding (MPEG-2 Part 7) and DVB has no standard for audio compression but typically uses MPEG-1 Part 3 Layer 2. The choice of modulation also varies between the schemes. In digital audio broadcasting, standards are much more unified with practically all countries choosing to adopt the Digital Audio Broadcasting standard (also known as the Eureka 147 standard). The exception is the United States which has chosen to adopt HD Radio. HD Radio, unlike Eureka 147, is based upon a transmission method known as in-band on-channel transmission that allows digital information to "piggyback" on normal AM or FM analog transmissions
However, despite the pending switch to digital, analog television remains being transmitted in most countries. An exception is the United States that ended analog television transmission (by all but the very low-power TV stations) on 12 June 2009 after twice delaying the switchover deadline. For analog television, there are three standards in use for broadcasting color TV (see a map on adoption here). These are known as PAL (German designed), NTSC (North American designed), and SECAM (French designed). (It is important to understand that these are the ways of sending color TV, and they do not have anything to do with the standards for black & white TV, which also vary from country to country.) For analog radio, the switch to digital radio is made more difficult by the fact that analog receivers are sold at a small fraction of the price of digital receivers. The choice of modulation for analog radio is typically between amplitude (AM) or frequency modulation (FM). To achieve stereo playback, an amplitude modulated subcarrier is used for stereo FM.
Internet

The OSI reference model
The Internet is a worldwide network of computers and computer networks that can communicate with each other using the Internet Protocol. Any computer on the Internet has a unique IP address that can be used by other computers to route information to it. Hence, any computer on the Internet can send a message to any other computer using its IP address. These messages carry with them the originating computer's IP address allowing for two-way communication. The Internet is thus an exchange of messages between computers.
It is estimated that the 51% of the information flowing through two-way telecommunications networks in the year 2000 were flowing through the Internet (most of the rest (42%) through the landline telephone). By the year 2007 the Internet clearly dominated and captured 97% of all the information in telecommunication networks (most of the rest (2%) through mobile phones). As of 2008, an estimated 21.9% of the world population has access to the Internet with the highest access rates (measured as a percentage of the population) in North America (73.6%), Oceania/Australia (59.5%) and Europe (48.1%). In terms of broadband access, Iceland (26.7%), South Korea (25.4%) and the Netherlands (25.3%) led the world.
The Internet works in part because of protocols that govern how the computers and routers communicate with each other. The nature of computer network communication lends itself to a layered approach where individual protocols in the protocol stack run more-or-less independently of other protocols. This allows lower-level protocols to be customized for the network situation while not changing the way higher-level protocols operate. A practical example of why this is important is because it allows an Internet browser to run the same code regardless of whether the computer it is running on is connected to the Internet through an Ethernet or Wi-Fi connection. Protocols are often talked about in terms of their place in the OSI reference model (pictured on the right), which emerged in 1983 as the first step in an unsuccessful attempt to build a universally adopted networking protocol suite.
For the Internet, the physical medium and data link protocol can vary several times as packets traverse the globe. This is because the Internet places no constraints on what physical medium or data link protocol is used. This leads to the adoption of media and protocols that best suit the local network situation. In practice, most intercontinental communication will use the Asynchronous Transfer Mode (ATM) protocol (or a modern equivalent) on top of optic fiber. This is because for most intercontinental communication the Internet shares the same infrastructure as the public switched telephone network.
At the network layer, things become standardized with the Internet Protocol (IP) being adopted for logical addressing. For the World Wide Web, these "IP addresses" are derived from the human readable form using the Domain Name System (e.g. 72.14.207.99 is derived from www.google.com). At the moment, the most widely used version of the Internet Protocol is version four but a move to version six is imminent.
At the transport layer, most communication adopts either the Transmission Control Protocol (TCP) or the User Datagram Protocol(UDP). TCP is used when it is essential every message sent is received by the other computer whereas UDP is used when it is merely desirable. With TCP, packets are retransmitted if they are lost and placed in order before they are presented to higher layers. With UDP, packets are not ordered or retransmitted if lost. Both TCP and UDP packets carry port numbers with them to specify what application or process the packet should be handled by. Because certain application-level protocols use certain ports, network administrators can manipulate traffic to suit particular requirements. Examples are to restrict Internet access by blocking the traffic destined for a particular port or to affect the performance of certain applications by assigning priority.
Above the transport layer, there are certain protocols that are sometimes used and loosely fit in the session and presentation layers, most notably the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols. These protocols ensure that data transferred between two parties remains completely confidential. Finally, at the application layer, are many of the protocols Internet users would be familiar with such as HTTP (web browsing), POP3 (e-mail), FTP (file transfer), IRC (Internet chat), BitTorrent (file sharing) and XMPP (instant messaging).
Voice over Internet Protocol (VoIP) allows data packets to be used for synchronous voice communications. The data packets are marked as voice type packets and can be prioritized by the network administrators so that the real-time, synchronous conversation is less subject to contention with other types of data traffic which can be delayed (i.e. file transfer or email) or buffered in advance (i.e. audio and video) without detriment. That prioritization is fine when the network has sufficient capacity for all the VoIP calls taking place at the same time and the network is enabled for prioritization i.e. a private corporate style network, but the Internet is not generally managed in this way and so there can be a big difference in the quality of VoIP calls over a private network and over the public Internet.

Local area networks and wide area networks
Despite the growth of the Internet, the characteristics of local area networks ("LAN" – computer networks that do not extend beyond a few kilometres in size) remain distinct. This is because networks on this scale do not require all the features associated with larger networks and are often more cost-effective and efficient without them. When they are not connected with the Internet, they also have the advantages of privacy and security. However, purposefully lacking a direct connection to the Internet will not provide 100% protection of the LAN from hackers, military forces, or economic powers. These threats exist if there are any methods for connecting remotely to the LAN.
There are also independent wide area networks ("WAN" – private computer networks that can and do extend for thousands of kilometers.) Once again, some of their advantages include their privacy, security, and complete ignoring of any potential hackers – who cannot "touch" them. Of course, prime users of private LANs and WANs include armed forces and intelligence agencies that must keep their information completely secure and secret.
In the mid-1980s, several sets of communication protocols emerged to fill the gaps between the data-link layer and the application layer of the OSI reference model. These included Appletalk, IPX, and NetBIOS with the dominant protocol set during the early 1990s being IPX due to its popularity with MS-DOS users. TCP/IP existed at this point, but it was typically only used by large government and research facilities.
As the Internet grew in popularity and a larger percentage of traffic became Internet-related, LANs and WANs gradually moved towards the TCP/IP protocols, and today networks mostly dedicated to TCP/IP traffic are common. The move to TCP/IP was helped by technologies such as DHCP that allowed TCP/IP clients to discover their own network address — a function that came standard with the AppleTalk/ IPX/ NetBIOS protocol sets.
It is at the data-link layer, though, that most modern LANs diverge from the Internet. Whereas Asynchronous Transfer Mode (ATM) or Multiprotocol Label Switching (MPLS) are typical data-link protocols for larger networks such as WANs; Ethernet and Token Ring are typical data-link protocols for LANs. These protocols differ from the former protocols in that they are simpler (e.g. they omit features such as Quality of Service guarantees) and offer collision prevention. Both of these differences allow for more economical systems. Despite the modest popularity of IBM token ring in the 1980s and 1990s, virtually all LANs now use either wired or wireless Ethernets. At the physical layer, most wired Ethernet implementations use copper twisted-pair cables (including the common 10BASE-Tnetworks). However, some early implementations used heavier coaxial cables and some recent implementations (especially high-speed ones) use optical fibers. When optic fibers are used, the distinction must be made between multimode fibers and single-mode fibers.Multimode fibers can be thought of as thicker optical fibers that are cheaper to manufacture devices for, but that suffers from less usable bandwidth and worse attenuation – implying poorer long-distance performance.

Similar Documents

Premium Essay

Telecommunications

...Telecommunication Industry In Singapore IS1105 SRATEGIC IT APPLICATIONS Tutorial Group 2 Group 6 Prepared by: Nguyen Thi Bich Van Pham Thanh Ha Poovanna Ponnimada Ashok Tran Thai Tri Tan A0074274 A0074389 A0074597 A0088437 TABLE OF CONTENTS I. II. III. OBJECTIVE INDUSTRY DESCRIPTION PORTER’S FIVE COMPETITIVE FORCES 1. Threat of new entrants 2. Bargaining power of buyers 3. Bargaining power of suppliers 4. Rivalry among Existing Competitors 5. Threat of substitute products or services 1 1 2 2 2 3 4 5 IV. V. COMPARISON OF THE COMPETITIVE FORCES INFORMATION SYSTEMS IN TELECOMMUNICATION 1. Enterprise Resource Planning a. Telecom Billing System b. Grid Computing Service 2. Customer Relation Management 5 5 5 5 6 7 VI. CONCLUSION 7 I. Objective This report seeks to analyze in detail the current state of competition within the Singapore’s Telecommunications industry. The industry is analyzed based on Porter’s 5 forces model. The paper also aims to identify the key players within the forces. How IT/IS has been able to change the strength of each force is also demonstrated. II. Industry description Generally, telecommunication industry consists of fixed line telecommunication and wireless telecommunication services. Fixed line communication is defined as voice telephony and data transferring offers and broadband. Wireless telecommunication services include mobile phones, pagers and other wireless telecommunication services. The three leading......

Words: 2846 - Pages: 12

Free Essay

Telecommunications

...Introduction The telecommunication industry plays a vital role in Bahrain. Telecommunications started in Bahrain with telegrams and telephony services in 1931 cable and wireless of UK (Batelco Group, 2011). Batelco was established in 1981 started to supply local residents with the telecommunication services. After years the government allowed other firms to be established in Bahrain and the TRA exited back then in 2002 to control the market prices and protect consumers interests (TRA, 2004). Telecoms are highly important in Bahrain because of the wide range of using technologies in every sector. Bahrain is an important financial and commercial center in the Middle East and the connection between the west and the east in the aviation sector. Nowadays, the development in the real state has viewed a big jump towards modern civilization made the investors focus on Bahrain as a growing financial kingdom. Which makes the communication technology development is very essential. Having world biggest sports events such as F1 and Olympic games also constitute an importance to have the latest telecommunication technology as well as the international media center to broadcast to the entire world. Theory application and analyzing Porter’s five forces model 1. Threat of new entrance: Interring the telecommunication market in Bahrain has a high threat because there are many competitive firms that people could go for instead of the new......

Words: 2404 - Pages: 10

Premium Essay

Telecommunication

...                                                     INTRODUCTION 1.1    Company’s profile: NEPAL TELECOM was registered on 2060-10-22 under Company Act, 2053. Then Nepal Telecommunications Corporation (NTC) was dissolved and all assets and liabilities were transferred to Nepal Telecom effective from 2061-01-01 (i.e. 13th April 2004). The company with its long history is on the way of customer service and nation building. In Nepal, operating any form of telecommunication service dates back to 94 years in B.S. 1970. But formally telecom service was provided mainly after the establishment of MOHAN AKASHWANI in B.S. 2005.Later as per the plan formulated in First National Five year plan (2012-2017); Telecommunication Department was established in B.S.2016. To modernize the telecommunications services and to expand the services, during third five-year plan (2023-2028), Telecommunication Department was converted into Telecommunications Development Board in B.S.2026. After the enactment of Communications Corporation Act 2028, it was formally established as fully owned Government Corporation called Nepal Telecommunications Corporation in B.S. 2032 for the purpose of providing telecommunications services to Nepalese People. After serving the nation for 29 years with great pride and a sense of accomplishment, Nepal Telecommunication Corporation was transformed into Nepal Doorsanchar Company Limited from Baisakh 1, 2061. Nepal Doorsanchar Company Limited is a company registered under......

Words: 4392 - Pages: 18

Premium Essay

Telecommunications:

...Effects of constantly changing nature of digital impacts on the telecommunication industry Problem definition Technological companies have been facing increased activity and this has led to increased customer demands. Customer demands have been changing as compared to the previous years. Another concern for technological companies is that because of booming business there has been increased level of competition in the industry. Various companies are coming up with developed products that have made traditional companies to become obsolete in the market. Due to rapid technological advancements, the numbers of people who are attracted to telecommunication equipment has increased tremendously. This unexpected increase in customer base is a problem for the telecommunication companies this is because this population increase leads to straining of the existing resources within telecommunication companies. These above concerns therefore indicate that the current market environment requires some level of overhaul within the business strategies of most companies within the telecommunications industry. There are various gaps among telecommunication companies and this has resulted in poor industrial performance in the market because of challenges that are associated with change in customer demands, increasing number of customers and heightened competition. There are various opportunities for the telecommunication companies that could be useful in reducing the adverse effects of the......

Words: 1659 - Pages: 7

Premium Essay

Telecommunication

...Introduction The Telecommunication industry plays an important role in the Irish economy in terms of size and employment. Continuous development in the telecommunication sector improves the lives of Irish citizens by changing the way we interact with family and friends, the way we learn and the way we do business. In Ireland, the Telecommunication industry is regulated by the Commission for Communications Regulations (Comreg), which is responsible for the regulation of the telecommunications, broadcasting and postal markets, based on the EU regulatory framework. (The contribution of Telecommunications to the Irish Economy, 2005). Currently, the major players in the Irish Telecommunication industry are Vodafone, Eir, Sky, Three Group and Virgin Media. This report will focus on Three Ireland. In order to analyse Three Group in Ireland and give future recommendations to the company, we have started from an external analysis of the Irish Telecommunication Industry. In doing so, we have used tools such as PESTEL analysis and Porter’s Five Forces that allowed us to better understand the environment in which the company operates. We have then focused on the internal strengths and weaknesses of the company by conducting a SWOT analysis. Finally, we have identified areas in which the company should focus in the future in order to keep its competitiveness. According to their website, Three is Ireland’s largest high speed network and fastest growing mobile operator. Launched in......

Words: 1113 - Pages: 5

Free Essay

Telecommunication

...1. Introduction The telecommunications sector in Malaysia has undergone significant physical and structural transformation in the past fifteen years. Between 1985 and 2000, the country’s telephone penetration rate rose by 540 per cent. Equally importantly, privatization and liberalization of the sector in the 1980s ushered in an era of regulatory reforms and competition in the sector. The market structure as well as the regulatory framework and institutions for the telecommunications sector continue to evolve. The real challenge lies in what to do after that – putting in place adequate regulatory framework and institutions that will ensure industry growth as well as protect consumer welfare. The on-going micro-regulatory reforms in the sector seek to fine-tune the regulatory mechanisms in the sector. This paper reviews the recent history and development of the telecommunications sector in Malaysia. Section 2 provides a brief historical account of the sector and the current structure of the sector. This is followed by a discussion on regulatory reforms in Section 3. Section 4 examines the impact of reforms in the telecommunications sector. Section 5 concludes by discussing the future policy agenda for the sector. 2. EVOLUTION OF INDUSTRY STRUCTURE 2.1. Physical Expansion The infrastructure sector plays a key role in Malaysia’s economic growth and development. The sector’s share of development expenditure in the various five-years plans......

Words: 5798 - Pages: 24

Premium Essay

Telecommunication

...Marketing Research A Research on Competition of Telecommunications in Nepal Submitted By: Ashish Shrestha (A11081) 3rd Year, 1st Sem Section: B Roll No: 32 Acknowledgement The research “A Research on Competition of Telecommunications in Nepal” would have not been successfully completed without the support and cooperation of different persons that provided their valuable instructions, comments and other significant contributions. Firstly, I would like to express my special thanks of gratitude towards our marketing faculty Mr. Bishal K. Chalise for providing an opportunity to work on this assignment. He guided me and provided instructions in preparing this research paper. I would like to thank him for his guidance in accomplishment of this report. Secondly, I am equally thankful towards Nepal college of Management for facilitating us with an advanced computer lab and well-equipped library. And Lastly, I would greatly thank all my friends who supported me whenever required. I would not have been able to finalize my report without their assistance. Ashish Shrestha (A11081) INTRODUCTION Marketing environment: Marketing environment refers to factors and forces outside marketing environment that affect a firm’s marketing management’s ability to build and maintain successful relationships with targeted customers. In modern marketing world, the marketers must be aware of the environmental trends and opportunities. They have......

Words: 3108 - Pages: 13

Free Essay

Telecommunications

...Plain Old Telephone Service Christopher G Bernier Student at ITT Technical Institute Author Note Any questions can be sent to cbernier111@itt-tech.edu Abstract Our building is a Plain Old Telephone Service or POTS. Since this is the oldest form of networks I will do some research on POTS and its different components. Keywords: POTS, Local loop, Central office, Local exchanges, POP, Long distance system, Fixed line, Cellular phones, Telephone network topology, Cable TV, Telecommunications Service, Cloud Computing Plain Old Telephone Service Plain old telephone service, or POTS is the original and oldest means of transferring data available today. POTS is made up of 6 components, Local Loop, the Central Office, the Local Exchange, POP, Long Distance Systems, and Fixed Line. Our system is a POTS and in this report I will explain these components. I will also define and describe the different Telecommunication network components in their relationship to POTS system. Local Loop. The local loop is the two copper wires that connect the telephone to the central office and back to the telephone. Since it makes a complete loop from beginning to end it is referred to as the local loop. The two copper wires are twisted together and are referred to as a twisted pair. Central Office. The central office services a group of people in a given area. With the possibility of servicing up to 10,000 customers at a time. Like zip......

Words: 1181 - Pages: 5

Free Essay

Telecommunication

...outpatient and other relevant hospital departments will entirely depend on the size of the hospital/clinic, some technicians, quality, and versatility of images and videos and storage expected. High-quality ultrasound machines will, therefore, give quality images, videos and any scanned document hence making easing the work and offering quality services while meeting the hospital goals. It is, therefore, imperative that a dedicated communication infrastructure is put in place to allow real-time transmission. On the other hand, the stored items/documents can easily be retrieved due quality storage system. This will help the hospital or clinic stakeholders and managers obtain past information, of ultrasound if required Telecommunication system The telecommunication system is a collection of...

Words: 1143 - Pages: 5

Free Essay

Definitions for Telecommunications

...Local loop is a telecommunication that uses a physical link or circuit connecting from the customer to the telecommunications service providers network. A central office is a building where home and business lines are connected on a local loop. This office has switches to switch calls locally or to a long-distance office. A local exchange is a term for a telephone company. They manage local telephone lines by a switchboard. There are three types of POP there is; internet, web, and wireless. The Internet POP has an access point to the internet and is a physical location that stores servers, and routers. The web POP is an account,or page. These are generally in addition to a personal or professional website. The wireless POP contains a presence of a wireless device like a cell phone, where it is to obtain service from a wireless provider. Long-Distance System is a system that lets customers make a call outside of the state or country through their provider with charge. A fixed line is also known as a landline. This uses a solid telephone line such as a fiber optic cable or metal wire, which uses radio waves to transmit the calls. Cellular telephones are wireless end devices that uses data and cell phone towers to operate and be able to talk with whoever you want to with your telephone provider. Data is a set of values or variables that is provided by your network provider and usually have to pay for the data plans. Voice is a service that uses a dial-tone to fulfill a......

Words: 591 - Pages: 3

Premium Essay

Research on Telecommunication

...INTRODUCTION 1 BACKGROUND Nowadays, telecommunication plays an important role in the worldwide connection, which leads to the new era of information technology. Having been used for the first time among militaries, wireless communication is now experiencing a mushroom increase in both quantity demanded and supplied. However, the situation of each service company seems not to be fit the general trend because their numbers of subscribers fluctuate widely. The purpose of this research is to find out the causes of the kinks between general movement and individuals’ trends. In fact, a telecommunication company or a communication service company is an enterprise that provides many kinds of services such as telephone, GPRS, Internet connection, etc. Some company belongs to government corporations such as Viettel while others are business like AT&T (American corporation) and Telekomunikasi Selular (Indonesian company). These service enterprises earn huge revenues each year which can be pointed out: Viettel corporation revenue is $4.15 billion while AT&Ts is about $15.6 billion. They are huge amounts of money composing to profits so every-company tries to maximize them by increasing the numbers of subscribers, which one way is using promotion plans. General information about promotion strategies can be found easily. Some marketing book have deeply view on this method. In term of marketing, Promotion is “one of the four elements of marketing mix......

Words: 6561 - Pages: 27

Free Essay

Intro to Telecommunications

...Peter Vallejo Intro to Telecommunications September 30, 2015 Chapter 2 Amplitude Modulation: Transmission 1. A 1500-kHz carrier and 2-kHz intelligence signal are combined in a nonlinear device. List all the frequency components produced. 1498, 1500 and 1520kHz 2. If a 1500-kHz radio wave is modulated by a 2-kHz sine-wave tone, what frequencies are contained in the modulated wave (the actual AM signal)? 3. If a carrier is amplitude-modulated, what causes the sideband frequencies? The non-linear mixing of the carrier and intelligence frequencies. 4. What determines the bandwidth of emission for an AM transmission? It is twice the frequency of the highest audio frequency transmitted. The upper sideband is fc +FM where fc is the carrier frequency and FM is the modulation (audio) frequency. The lower sideband is fc-FM. The total band 10. What are some of the possible results of overmodulation? 19. Why is a high percentage of modulation desirable? 20. During 100 percent modulation, what percentage of the average output power is in the sidebands? (33.3%) 23. Describe two possible ways that a transistor can be used to generate an AM signal. 24. What is low-level modulation? 25. What is high-level modulation? 27. Why must some radio-frequency amplifiers be neutralized? 29. Define parasitic oscillation. Higher frequency self-oscillations in RF amplifiers. 30. How does self-oscillation occur? 32. What is the principal advantage of a class C amplifier? 35....

Words: 452 - Pages: 2

Premium Essay

Telecommunication Certifications

...Training Technology and Management Training Courses and Seminars http://www.tonex.com Telecommunications Certification - Certificate in Telecommunications Why should you choose TONEX for Telecommunications Certification? Certificate in Telecommunications Technology, Engineering and Management? Telecommunications Certification, Technology, Engineering and Management, a 8-week program, addresses the requirement of the communications industry for technical and management expertise and business skills. Telecommunications Certification provides telecom technical knowledge along with telecom management. skills: telecom planning, implementation, management of physical systems for voice, video, and data communications. Telecommunications Certification Objective: Provide a strong foundation in the technical aspects of telecommunications technologies Learn about Information and Communication Technology (ICTs) Industry Structures and Concepts Assess current and emerging telecommunications technologies including wireline, wireless, mobile and broadband Establish an understanding of telecommunications management Become proficient in the technical specifications of telecommunications technologies Evaluate alternative technologies for the fulfillment of communications needs Understand telecommunications trends for voice, data transfer,video and digital entertainment converge Telecommunications Certification optional courses include: Introduction to Telecom......

Words: 426 - Pages: 2

Free Essay

Telecommunication Industry.

...Telecommunication Industry. Communication networks in the digital world make possible joint production of a range of different services for a diverse group of customers. In the case of telephony, technological development has increased economies of scope far beyond joint production of voice and fax connection. For most calculation purposes, this means that the old costing systems and allocation assumptions stemming from the days of national voice telephony simply do not offer relevant facts any longer. This is true for internal decision making in the telecommunications, but perhaps more importantly for setting interconnection charges. Activity Based Costing (ABC) is an alternative to or improvement of previous costing practices. The activities in telecommunication network can be process steps and switching. For example, a long distance call passes by several switching processes. In this case, we can calculate cost per switching following the call time and distance used by subscriber. In the central process steps in telecommunication network, cost varies according to traffic. Call consists of switching, connection before call, and call connection. In this operating level, cost driver is the number of switches in switching process and the time to call in channel and transmission process respectively. Activity Based Costing (ABC) is an alternative to or improvement of previous costing practices. The activities in telecommunication network can be process steps and......

Words: 298 - Pages: 2

Free Essay

Indian Telecommunication Sector

...Higher standards............making a difference for you INDIAN TELECOMMUNICATION SECTOR I Introduction Indian telecom industry is growing at a great pace & India is expected to become a manufacturing hub for telecom equipment. Indian telecom equipment manufacturing sector is set to become one of the largest sectors globally by 2010. Due to rising demand for a wide range of telecom equipment, particularly in the area of mobile telecommunications, has provided excellent opportunities to domestic and foreign investors in the manufacturing sector. II Opportunitie s The Indian telecom market is expected to grow three fold by 2012 & market size over US $ 8 billion. Moreover the government has set a target of 20 million broadband connections by 2010. The National Telecom Policy 1999 targets tele-density at 15 per cent by 2010. This will entail an investment of US $ 40- 50 billion over the next 6-8 years. There is an immense opportunity for DTH in the Indian market which is almost 10 times compared to the developed countries like the US and Europe. For every channel there is a scope for broadcasting it in at least ten different languages. So every channel multiplied by ten that is the kind of scope for DTH in the country. India’s media players have all the ingredients to develop a successful DTH industry. So currently there is a lot of pent-up demand in the Indian market for DTH. It is expected that by the year 2010 there will be over 500 million subscribers in the Indian telecom......

Words: 1060 - Pages: 5