Free Essay

Total Productivity Mainteneance

In: Business and Management

Submitted By 083805154
Words 1849
Pages 8
TPM TOTAL PRODUCTIVE MAINTENANCE History and Basic Implementation Process

by Jack Roberts, Ph.D.

Department of Industrial and Engineering Technology Texas A&M University-Commerce

Abstract: Total Productive Maintenance (TPM) is a maintenance program which involves a newly defined concept for maintaining plants and equipment. The goal of the TPM program is to markedly increase production while, at the same time, increasing employee morale and job satisfaction. The TPM program closely resembles the popular Total Quality Management (TQM) program. Many of the same tools such as employee empowerment, benchmarking, documentation, etc. are used to implement and optimize TPM. This paper will define TPM in some detail, evaluate its strengths and weaknesses as a maintenance philosophy, and discuss implementation procedures. Examples of successfully implemented programs will be presented.

I. What is Total Productive Maintenance?

Total Productive Maintenance (TPM) is a maintenance program concept. Philosophically, TPM resembles Total Quality Management (TQM) in several aspects, such as (1)total commitment to the program by upper level management is required, (2) employees must be empowered to initiate corrective action, and (3) a long range outlook must be accepted as TPM may take a year or more to implement and is an on-going process. Changes in employee mind-set toward their job responsibilities must take place as well.

TPM brings maintenance into focus as a necessary and vitally important part of the business. It is no longer regarded as a non-profit activity. Down time for maintenance is scheduled as a part of the manufacturing day and, in some cases, as an integral part of the manufacturing process. It is no longer simply squeezed in whenever there is a break in material flow. The goal is to hold emergency and unscheduled maintenance to a minimum.

II. When and where did TPM originate?

TPM evolved from TQM, which evolved as a direct result of Dr. W. Edwards Deming's influence on Japanese industry. Dr. Deming began his work in Japan shortly after World War II. As a statistician, Dr. Deming initially began to show the Japanese how to use statistical analysis in manufacturing and how to use the resulting data to control quality during manufacturing. The initial statistical procedures and the resulting quality control concepts fueled by the Japanese work ethic soon became a way of life for Japanese industry. This new manufacturing concept eventually became knows as Total Quality Management or TQM.

When the problems of plant maintenance were examined as a part of the TQM program, some of the general concepts did not seem to fit or work well in the maintenance environment. Preventative maintenance (PM) procedures had been in place for some time and PM was practiced in most plants. Using PM techniques, maintenance schedules designed to keep machines operational were developed. However, this technique often resulted in machines being over-serviced in an attempt to improve production. The thought was often "if a little oil is good, a lot should be better." Manufacturer's maintenance schedules had to be followed to the letter with little thought as to the realistic requirements of the machine. There was little or no involvement of the machine operator in the maintenance program and maintenance personnel had little training beyond what was contained in often inadequate maintenance manuals.

The need to go further than just scheduling maintenance in accordance with manufacturer's recommendations as a method of improving productivity and product quality was quickly recognized by those companies who were committed to the TQM programs. To solve this problem and still adhere to the TQM concepts, modifications were made to the original TQM concepts. These modifications elevated maintenance to the status of being an integral part of the overall quality program.

The origin of the term "Total Productive Maintenance" is disputed. Some say that it was first coined by American manufacturers over forty years ago. Others contribute its origin to a maintenance program used in the late 1960's by Nippondenso, a Japanese manufacturer of automotive electrical parts. Seiichi Nakajima, an officer with the Institute of Plant Maintenance in Japan is credited with defining the concepts of TPM and seeing it implemented in hundreds of plants in Japan.

Books and articles on TPM by Mr. Nakajima and other Japanese as well as American authors began appearing in the late 1980's. The first widely attended TPM conference held in the United States occurred in 1990. Today, several consulting companies routinely offer TPM conferences as well as provide consulting and coordination services for companies wishing to start a TPM program in their plants.

III. Implementation of TPM

To begin applying TPM concepts to plant maintenance activities, the entire work force must first be convinced that upper level management is committed to the program. The first step in this effort is to either hire or appoint a TPM coordinator. It is the responsibility of the coordinator to sell the TPM concepts to the work force through an educational program. To do a thorough job of educating and convincing the work force that TPM is just not another "program of the month," will take time, perhaps a year or more.

Once the coordinator is convinced that the work force is sold on the TPM program and that they understand it and its implications, the first study and action teams are formed. These teams are usually made up of people who directly have an impact on the problem being addressed. Operators, maintenance personnel, shift supervisors, schedulers, and upper management might all be included on a team. Each person becomes a "stakeholder" in the process and is encouraged to do his or her best to contribute to the success of the team effort. Usually, the TPM coordinator heads the teams until others become familiar with the process and natural team leaders emerge.

TPM Responsibilities Training-Coaching-Consulting

Total Productive Maintenance action teams are charged with the responsibility of pinpointing problem areas, detailing a course of corrective action, and initiating the corrective process. Recognizing problems and initiating solutions may not come easily for some team members. They will not have had experiences in other plants where they had opportunities to see how things could be done differently. In well run TPM programs, team members often visit cooperating plants to observe and compare TPM methods, techniques, and to observe work in progress. This comparative process is part of an overall measurement technique called "benchmarking" and is one of the greatest assets of the TPM program.

TPM teams are encouraged to start on small problems and keep meticulous records of their progress. Successful completion of the team's initial work is always recognized by management. Publicity of the program and its results are one of the secrets of making the program a success. Once the teams are familiar with the TPM process and have experienced success with a small problem, problems of ever increasing importance and complexity are addressed.

As an example, in one manufacturing plant, one punch press was selected as a problem area. The machine was studied and evaluated in extreme detail by the team. Production over an extended period of time was used to establish a record of productive time versus nonproductive time. Some team members visited a plant several states away which had a similar press but which was operating much more efficiently. This visit gave them ideas on how their situation could be improved. A course of action to bring the machine into a "world class" manufacturing condition was soon designed and work was initiated. The work involved taking the machine out of service for cleaning, painting, adjustment, and replacement of worn parts, belts, hoses, etc. As a part of this process, training in operation and maintenance of the machine was reviewed. A daily check list of maintenance duties to be performed by the operator was developed. A factory representative was called in to assist in some phases of the process. Total Productive Maintenance was just the right fit for the situation

After success has been demonstrated on one machine and records began to show how much the process had improved production, another machine was selected, then another, until the entire production area had been brought into a "world class" condition and is producing at a significantly higher rate.

Note that in the example above, the operator was required to take an active part in the maintenance of the machine. This is one of the basic innovations of TPM. The attitude of "I just operate it!" is no longer acceptable. Routine daily maintenance checks, minor adjustments, lubrication, and minor part change out become the responsibility of the operator. Extensive overhauls and major breakdowns are handled by plant maintenance personnel with the operator assisting. Even if outside maintenance or factory experts have to be called in, the equipment operator must play a significant part in the repair process. Training for TPM coordinators is available from several sources. Most of the major professional organizations associated with manufacturing as well as private consulting and educational groups have information available on TPM implementation. The Society of Manufacturing Engineers (SME) and Productivity Press are two examples. Both offer tapes, books, and other educational material that tell the story of TPM. Productivity Press conducts frequent seminars in most major cities around the United States. They also sponsor plant tours for benchmarking and training purposes.

IV. The Results of Total Productive Maintenance

Ford, Eastman Kodak, Dana Corp., Allen Bradley, Harley Davidson; these are just a few of the companies that have implemented TPM successfully. All report an increase in productivity using TPM. Kodak reported that a $5 million investment resulted in a $16 million increase in profits which could be traced and directly contributed to implementing a TPM program. One appliance manufacturer reported the time required for die changes on a forming press went from several hours down to twenty minutes! This is the same as having two or three additional million dollar machines available for use on a daily basis without having to buy or lease them. Texas Instruments reported increased production figures of up to 80% in some areas. Almost all the above named companies reported 50% or greater reduction in down time, reduced spare parts inventory, and increased on-time deliveries. The need for out-sourcing part or all of a product line was greatly reduced in many cases.

V. Conclusion

Today, with competition in industry at an all time high, Total Productive Maintenance may be the only thing that stands between success and total failure for some companies. It has been proven to be a program that works. It can be adapted to work not only in industrial plants, but in construction, building maintenance, transportation, and in a variety of other situations. Employees must be educated and convinced that TPM is not just another "program of the month" and that management is totally committed to the program and the extended time frame necessary for full implementation. If everyone involved in a TPM program does his or her part, an unusually high rate of return compared to resources invested may be expected. pr

Similar Documents

Premium Essay


...NPO-watch—Iran Reports from NIPO 11th anniversary celebration productivity; Mr. Reza Ashraf Semnani, Vice Chairman, Planning, Development and Technology Department, Ministry of Industry and Mines: productivity in industry and mines and national productivity; and NIPO Supervision and Planning Director Faghihi: NIPO’s mission. The National Iranian Productivity Organization (NIPO) celebrated its 11th anniversary on 24 May 2004 with a national conference on productivity growth and sustainable development. It was inaugurated by Iranian Vice President Dr. Hamid Reza Baradaran Shoraka, who gave an address on “The 20-year panorama and the role productivity plays in economic development plans.” He underlined the importance of total factor productivity (TFP) to the national economy and suggested that it should be included in the development plans of the administrative organizations at both the national and provincial levels. He also called for the establishment of a national productivity award. NIPO Vice Chairman and APO Alternate Director for Iran Dr. Ghasem Ansari Ranani told the meeting that the Fourth Five-Year National Development Plan of Iran will have a TFP component as it has a considerable role in increasing national economic growth. In supporting the Vice President’s call for promoting TFP in administrative organizations and establishing a national productivity award, he added that Iran should endeavor to achieve a labor, capital, and TFP growth......

Words: 652 - Pages: 3

Free Essay


...Research paper on Linear Programming Problem Productivity growth and efficiency change in Indian banking: Technology effect vs catch-up effect Name: Gajanan S Ghadlinge Roll No. 18, MMS-I Document Information: | Title: | Productivity growth and efficiency change in Indian banking:Technology effect vs catch-up effect | Author(s): | Lakshmi Kumar, Institute for Financial Management and Research (IFMR), ChennaiD. Malathy, Department of Humanities and Social Sciences, IIT Madras, Chennai, andL.S. Ganesh, Department of Management Studies, IIT Madras, Chennai, India | Citation: | Surender Kumar, (2006) "A decomposition of total productivity growth: A regional analysis of Indian industrial manufacturing growth", International Journal of Productivity and Performance Management, Vol. 55 Iss: 3/4, pp.311 - 331 | Publisher: | Journal of Advances in ManagementResearch Vol. 7 No. 2, 2010pp. 194-218#Emerald Group Publishing Limited0972-7981DOI 10.1108/09727981011084995 | Abstract: | Purpose– The purpose of this paper is to understand the influence of technology change in the banking sector by employing data envelopment analysis (DEA) and also to determine the change in total factor productivity (TFP) and its components, namely technical change and technical efficiency change.Design/methodology/approach– The DEA method has been used to assess the efficiency of the entire banking sector and the bank groups. The purpose has been to investigate TFP change and its......

Words: 504 - Pages: 3