# Wooldridge - Introductory Econometrics 2nd Ed. Solutions

In:

Submitted By Meekcreature
Words 73034
Pages 293
CHAPTER 1
TEACHING NOTES
You have substantial latitude about what to emphasize in Chapter 1. I find it useful to talk about the economics of crime example (Example 1.1) and the wage example (Example 1.2) so that students see, at the outset, that econometrics is linked to economic reasoning, if not economic theory. I like to familiarize students with the important data structures that empirical economists use, focusing primarily on cross-sectional and time series data sets, as these are what I cover in a first-semester course. It is probably a good idea to mention the growing importance of data sets that have both a cross-sectional and time dimension.
I spend almost an entire lecture talking about the problems inherent in drawing causal inferences in the social sciences. I do this mostly through the agricultural yield, return to education, and crime examples. These examples also contrast experimental and nonexperimental data. Students studying business and finance tend to find the term structure of interest rates example more relevant, although the issue there is testing the implication of a simple theory, as opposed to inferring causality. I have found that spending time talking about these examples, in place of a formal review of probability and statistics, is more successful (and more enjoyable for the students and me).

3

CHAPTER 2
TEACHING NOTES
This is the chapter where I expect students to follow most, if not all, of the algebraic derivations.
In class I like to derive at least the unbiasedness of the OLS slope coefficient, and usually I derive the variance. At a minimum, I talk about the factors affecting the variance. To simplify the notation, after I emphasize the assumptions in the population model, and assume random sampling, I just condition on the values of the explanatory variables in the sample. Technically, this is justified by random sampling

### Similar Documents

...Econometrics (Economics 360) Syllabus: Spring 2015 Instructor: Ben Van Kammen Office: Krannert 531 Office Hours: Friday, 10 a.m.-noon Email: bvankamm@purdue.edu Meeting Location: KRAN G010 Meeting Days/Times: TR 1:30-2:45 p.m. (001) TR 3-4:15 p.m. (002) TR 4:30-5:45 p.m. (003) Course Description This is an upper division economics course required for students pursuing a BS in economics. It is one of the few courses that explicitly covers empirical methods, i.e., the analysis of observed economic behavior in the form of data. Empirics stand in contrast to theory, e.g., micro and macro, about how agents behave. Despite this under-representation, empirical analysis comprises a large part of economists’ workload and is one of the most practical skills that an economics student can learn. Course Objectives In this class students will: 1. perform statistical and practical inference based on the results of empirical analysis, 2. identify useful characteristics of estimators, e.g., unbiasedness, consistency, efficiency, 3. state predictions of theoretical economic models in terms of testable hypotheses, 4. model economic relationships using classical methods, such as Ordinary Least Squares, derive the properties of estimators related to these methods, and 5. perform estimation using methods discussed in class using software, 6. perform diagnostic tests that infer whether a model’s assumptions are invalid, 7. evaluate empirical models based on whether their resulting estimators...

Words: 2067 - Pages: 9

Free Essay

#### Accounting

Words: 18533 - Pages: 75

Free Essay

#### Dr Manger

Words: 29834 - Pages: 120

Free Essay

#### Oil Price

...Boston College Economics The Stata Journal (yyyy) Working Paper Number ii, pp. 1–38 vv, No. 667 Enhanced routines for instrumental variables/GMM estimation and testing Christopher F. Baum Mark E. Schaﬀer Boston College Heriot–Watt University Steven Stillman Motu Economic and Public Policy Research Abstract. We extend our 2003 paper on instrumental variables (IV) and GMM estimation and testing and describe enhanced routines that address HAC standard errors, weak instruments, LIML and k-class estimation, tests for endogeneity and RESET and autocorrelation tests for IV estimates. Keywords: st0001, instrumental variables, weak instruments, generalized method of moments, endogeneity, heteroskedasticity, serial correlation, HAC standard errors, LIML, CUE, overidentifying restrictions, Frisch–Waugh–Lovell theorem, RESET, Cumby-Huizinga test 1 Introduction In an earlier paper, Baum et al. (2003), we discussed instrumental variables (IV) estimators in the context of Generalized Method of Moments (GMM) estimation and presented Stata routines for estimation and testing comprising the ivreg2 suite. Since that time, those routines have been considerably enhanced and additional routines have been added to the suite. This paper presents the analytical underpinnings of both basic IV/GMM estimation and these enhancements and describes the enhanced routines. Some of these features are now also available in Stata 10’s ivregress, while others are not. The additions include: • Estimation and testing...

Words: 16813 - Pages: 68

#### Textbook

...This page intentionally left blank Introductory Econometrics for Finance SECOND EDITION This best-selling textbook addresses the need for an introduction to econometrics speciﬁcally written for ﬁnance students. It includes examples and case studies which ﬁnance students will recognise and relate to. This new edition builds on the successful data- and problem-driven approach of the ﬁrst edition, giving students the skills to estimate and interpret models while developing an intuitive grasp of underlying theoretical concepts. Key features: ● Thoroughly revised and updated, including two new chapters on ● ● ● ● ● ● panel data and limited dependent variable models Problem-solving approach assumes no prior knowledge of econometrics emphasising intuition rather than formulae, giving students the skills and conﬁdence to estimate and interpret models Detailed examples and case studies from ﬁnance show students how techniques are applied in real research Sample instructions and output from the popular computer package EViews enable students to implement models themselves and understand how to interpret results Gives advice on planning and executing a project in empirical ﬁnance, preparing students for using econometrics in practice Covers important modern topics such as time-series forecasting, volatility modelling, switching models and simulation methods Thoroughly class-tested in leading ﬁnance schools Chris Brooks is Professor of Finance at the ICMA Centre, University...

Words: 195008 - Pages: 781

#### Econometrics

...This page intentionally left blank Introductory Econometrics for Finance SECOND EDITION This best-selling textbook addresses the need for an introduction to econometrics speciﬁcally written for ﬁnance students. It includes examples and case studies which ﬁnance students will recognise and relate to. This new edition builds on the successful data- and problem-driven approach of the ﬁrst edition, giving students the skills to estimate and interpret models while developing an intuitive grasp of underlying theoretical concepts. Key features: ● Thoroughly revised and updated, including two new chapters on ● ● ● ● ● ● panel data and limited dependent variable models Problem-solving approach assumes no prior knowledge of econometrics emphasising intuition rather than formulae, giving students the skills and conﬁdence to estimate and interpret models Detailed examples and case studies from ﬁnance show students how techniques are applied in real research Sample instructions and output from the popular computer package EViews enable students to implement models themselves and understand how to interpret results Gives advice on planning and executing a project in empirical ﬁnance, preparing students for using econometrics in practice Covers important modern topics such as time-series forecasting, volatility modelling, switching models and simulation methods Thoroughly class-tested in leading ﬁnance schools Chris Brooks is Professor of Finance...

Words: 195008 - Pages: 781

#### Assistant Professor

...SUBJECT REVIEW Regression Methods in the Empiric Analysis of Health Care Data GRANT H. SKREPNEK, PhD ABSTRACT OBJECTIVE: The aim of this paper is to provide health care decision makers with a conceptual foundation for regression analysis by describing the principles of correlation, regression, and residual assessment. SUMMARY: Researchers are often faced with the need to describe quantitatively the relationships between outcomes andpre d i c t o r s , with the objective of ex p l a i n i n g trends, testing hypotheses, or developing models for forecasting. Regression models are able to incorporate complex mathematical functions and operands (the variables that are manipulated) to best describe the associations between sets of variables. Unlike many other statistical techniques, regression allows for the inclusion of variables that may control for confounding phenomena or risk factors. For robust analyses to be conducted, however, the assumptions of regression must be understood and researchers must be aware of diagnostic tests and the appropriate procedures that may be used to correct for violations in model assumptions. CONCLUSION: Despite the complexities and intricacies that can exist in re gre s s i o n , this statistical technique may be applied to a wide range of studies in managed care settings. Given the increased availability of data in administrative databases, the application of these procedures to pharmacoeconomics and outc o m e s assessments may result in...

Words: 9010 - Pages: 37

#### Econometrics

Words: 194599 - Pages: 779

Free Essay

#### Most Harmless Econometrics

...Mostly Harmless Econometrics: An Empiricist’ Companion s Joshua D. Angrist Massachusetts Institute of Technology Jörn-Ste¤en Pischke The London School of Economics March 2008 ii Contents Preface Acknowledgments Organization of this Book xi xiii xv I Introduction 1 3 9 10 12 16 1 Questions about Questions 2 The Experimental Ideal 2.1 2.2 2.3 The Selection Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random Assignment Solves the Selection Problem . . . . . . . . . . . . . . . . . . . . . . . . Regression Analysis of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II The Core 19 21 22 23 26 30 36 38 38 44 47 51 51 3 Making Regression Make Sense 3.1 Regression Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 3.1.2 3.1.3 3.1.4 3.2 Economic Relationships and the Conditional Expectation Function . . . . . . . . . . . Linear Regression and the CEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Asymptotic OLS Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Saturated Models, Main E¤ects, and Other Regression Talk . . . . . . . . . . . . . . . Regression and Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 3.2.2 3.2.3 The Conditional Independence Assumption . . . . . . . . . . . . . . . . . . . . . . . . The Omitted Variables Bias Formula . ....

Words: 114745 - Pages: 459

#### Quantitative Models

...includes: a demonstration of the mechanics of the model, empirical analysis, real-world examples, and interpretation of results and ﬁndings. The reader of the book will learn how to apply the techniques, as well as understand the latest methodological developments in the academic literature. Pathways are oﬀered in the book for students and practitioners with diﬀering statistical and mathematical skill levels, although a basic knowledge of elementary numerical techniques is assumed. PHILIP HANS FRANSES is Professor of Applied Econometrics aﬃliated with the Econometric Institute and Professor of Marketing Research aﬃliated with the Department of Marketing and Organization, both at Erasmus University Rotterdam. He has written successful textbooks in time series analysis. RICHARD PAAP is Postdoctoral Researcher with the Rotterdam Institute for Business Economic Studies at Erasmus University Rotterdam. His research interests cover applied (macro-)econometrics, Bayesian statistics, time series analysis, and marketing research. Quantitative Models in Marketing Research Philip Hans Franses and Richard Paap           The Pitt Building, Trumpington Street, Cambridge, United Kingdom    The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th...

Words: 72409 - Pages: 290