Free Essay

Aluminum

In:

Submitted By adaovega
Words 3136
Pages 13
Pregunta 1.
Usando la información proporcionada sobre aluminio construya y estime la oferta de la
Industria para el aluminio primario.
Dado que cada planta tiene diferente tecnología dependiendo de su antigüedad y cada tecnología produce con un costo variable determinado, consideramos que la oferta total de la industria puede definirse en base al costo variable, ya que en este tipo de industria el precio es definido por el costo. Por lo que se estimo la oferta de la industria para el aluminio usando la siguiente especificación linear:

Q = a + bPE + cPA + dOth + ePpf + fCo +gMA+ hLA + iFR + jGA

Donde Q es la capacidad (tpy), PE el precio de la electricidad ($/kWh), PA el precio de la alúmina ($/t alúmina), Oth es el costo de otras materias primas, Ppf el costo de energía de la planta y combustibles, MA el costo de mantenimiento, FR el costo de fletes ,y GA los gastos generales y administrativos. Los resultados de la regresión son los siguientes:

Regression Analysis R² 0.243 Adjusted R² 0.196 n 157 R 0.493 k 9 Std. Error 105.476 Dep. Var. Capacity (tpy) ANOVA table
Source SS df MS F p-value
Regression 524,369.3834 9 58,263.2648 5.24 3.53E-06
Residual 1,635,389.5142 147 11,125.0987
Total 2,159,758.8976 156

Regression output confidence interval variables coefficients std. error t (df=147) p-value 95% lower 95% upper
Intercept 221.4214 90.8935 2.436 .0160 41.7946 401.0481
Electricity price ($/kWh) -1,999.3728 845.8835 -2.364 .0194 -3,671.0359 -327.7098
Alumina price ($/t Alumina) 0.7489 0.3852 1.944 .0538 -0.0123 1.5101
Other raw materials -0.5990 0.2142 -2.797 .0058 -1.0223 -0.1758
Plant power and fuel -0.5320 1.2667 -0.420 .6751 -3.0354 1.9713
Consumables -0.5917 0.2241 -2.640 .0092 -1.0347 -0.1488
Maintenance 0.4110 0.6108 0.673 .5021 -0.7962 1.6181
Labor -0.3061 0.0882 -3.471 .0007 -0.4804 -0.1318
Freight -1.1275 0.7355 -1.533 .1274 -2.5809 0.3259
General and administrative 0.0883 0.1757 0.502 .6161 -0.2589 0.4354

Conclusiones sobre el cuadro de salida de la regresión:

• Ya que R2=0.243, la ecuación de regresión explica cerca de 24% del total de la variación de la variable dependiente sin embargo un 76% de la variación de Q queda sin explicar.
• Realizando la prueba global al modelo a un nivel de significancia del 5 por ciento obtenemos que,

Dado que :

k = 10 y n= 157
Entonces, k-1 = 9, n-k = 147 grados de libertad

F-distribution df1 = 9 P(lower) P(upper) F df2 = 147 .9500 .0500 1.94

El valor crítico para F para un nivel de significancia de 5% es de 1.94, el valor calculado del estadístico F por la computadora es de 5.24, el cual excede 1.94 por lo que el modelo es estadísticamente significativo.

• Haciendo la prueba de significancia estadística de los parámetros estimados a un nivel de confianza de 5%, lo cual significa que exista un 95% de confianza de que el verdadero valor del parámetro pertenezca a la distribución del parámetro que resulto estimado; dado que el numero de observaciones es de 157 y las variables son 10, los grados de libertad son 147, para el cual nos da un valor critico de t de 1.655.

t-distribution df = 147 P(lower) P(upper) t .9500 .0500 1.655

• Comparando los valores calculados de la razón t para a, b, c, d, f y h correspondientes a las variables PE , PA ,Oth , Ppf y LA respectivamente son superiores a 1.655, por lo que podemos establecer la significancia estadística de dichos estimadores. Aplicando el mismo concepto de análisis, podemos ver que los parámetros estimados e, g, i y j correspondientes a las variables Co, MA, FR y GA no son estadísticamente significativos, pues son menores a 1.655.
• Para estimar la oferta de la industria para el aluminio primario sustituimos los valores de las variables en la regresión estimada, se consideraron aquellas variables que no son significativas ya que en conjunto con las que si lo son ayudan a que el modelo sea mas completo. La regresión estimada es:

Q = 221.42 – 1999.37PE + .7489PA - .5990Oth - .5320Ppf - .5917Co +.4110MA - .3061LA – 1.1275FR + .0883GA

Pregunta 2. ¿Qué determina el precio cuando existe exceso de capacidad?

Una empresa normalmente tiene un intervalo en el que puede fijar el precio. El límite inferior de dicho intervalo son los costos variables, por debajo de los cuales nunca se debe vender. El límite superior lo establece el nivel de demanda por encima del cual no se demanda ningún producto. Cuanto más amplio sea este intervalo mayor libertad tendrá la empresa para fijar sus precios. Cualquier empresa ha de tener en cuenta tres elementos esenciales para fijar sus precios: los costos, la demanda y la competencia. Sin embargo una de las razones que puede motivar la reducción de precios es el exceso de capacidad.
Cuando existe un exceso de capacidad, el precio tiende al punto de equilibrio con los costos variables, por lo tanto el precio es determinado por los costos variables cuando se tiene un exceso de capacidad. Es decir, como este tipo de industria es de proceso continuo, en la cual una vez iniciado el proceso de producción no se tiene flexibilidad de reducir la misma, este tipo de fabricas trabajan a su máxima capacidad instalada lo que resulta en que su curva de oferta es plana en el corto plazo donde todos los costos tienden a ser fijos. Para poder vender su producción (ley de la demanda), las empresas tienden a reducir sus costos para desplazar la demanda al punto de equilibrio de tal forma que la demanda sea igual a la capacidad de producción. Es importante recalcar que mientras el precio cubra los costos variables la empresa se podrá mantener en el negocio en el corto plazo, sin embargo a largo plazo deberá buscar la manera de generar valor agregado en caso contrario está destinada a desaparecer.

Pregunta 3.

Los precios convergen al costo en tiempos de exceso de capacidad. ¿Pero por qué son los precios tan cíclicos?

En un escenario de producción continua, los precios son tan cíclicos por la falta de flexibilidad de las empresas para ajustar su capacidad de producción en el corto plazo, es decir, dada esta limitación, cuando existe exceso de capacidad como se explica en la respuesta 2, los precios tienden a reducirse hasta el punto de equilibrio, manteniéndose así la oferta plana hasta que las empresas puedan ajustar su capacidad de producción en el largo plazo, que en el caso de las empresas de fundición de aluminio es de aproximadamente 4 años, lo que nos lleva a un escenario cíclico en la fijación de precios debido a que el ciclo se inicia de nuevo, ya sea aumentando la capacidad instalada o cerrando plantas, lo cual desplaza la demanda a un nuevo punto de equilibrio.

Pregunta 4.
¿Debería Alusaf construir la planta de Hillside? ¿Tendría caso construir la planta a los precios actuales?

Capital estimado de inversión 1.6 billones $/ton
Precio de venta aluminio $1,110.00
Costo de energía 16% del precio de la tonelada de aluminio
Costos de alúmina y energía 41% precio de la tonelada de aluminio
Capacidad instalada 446,000 ton/ año

Precio de venta aluminio 1,110.00 Costos totales explícitos. Costos de alúmina y energía 202,974,600.00 Costos operación Hillside(tabla b) 165,020,000.00 Costo variable total 367,994,600.00 Costos totales implícitos. Rentabilidad sobre capital (3%)* 48,000,000.00 * Se asume que el costo del dinero en 1994 era del 3%. Costos totales aplicados Costos totales explícitos 367,994,600.00 Costos totales implícitos 48,000,000.00 415,994,600.00 Ganancias económicas 1994 Ingresos por ventas 495,060,000.00 Costos totales aplicados 415,994,600.00 79,065,400.00

Análisis marginal 1993 1994 Capacidad 170,000 466,000 Utilidad $8,600,000.00 $79,065,400.00 Rendimiento marginal $50.59 $169.67 Si debería Alusaf's construir la nueva planta considerando los precios actuales, ya que esto representaría una utilidad anual de $79.0 millones de dólares con un ingreso teniendo un ingreso marginal de más del triple.

Equipo 23.
Calificación: 97
Pregunta 1:
Dada la enorme confusión que se generó en el período asignado para la solución de este caso con respecto a la estimación de la curva de oferta, solo me queda dejarles el siguiente instructivo para la solución de la estimación de la curva de oferta para la industria del aluminio (dado que los paquetes econométricos no nos arrojan un coeficiente para el precio si consideramos un mismo precio para todas las industrias). Tómenlo en consideración para cuando deseen hacer una estimación en sus empresas y tengan una problemática similar.
Para resolver la primer pregunta del caso Harvard: Aluminium Smelting in South Africa: Alusaf´s Hillside Project, en donde nos piden estimar una curva de oferta para la industria del aluminio, debemos considerar lo siguiente:
1. Nos piden estimar la curva de oferta de aluminio o bien la función de oferta del aluminio para toda la industria.
2. Para estimarla debemos considerar una variable dependiente: cantidad ofrecida de aluminio o bien si no contamos con esta variable, como es nuestro caso, utilizamos una variable proxy de esta cantidad, que para nosotros será la capacidad instalada.
3. Las variables independientes necesarias para estimar la función de oferta serán: todos los costos variables que tenga la industria, en nuestro caso todos los costos variables que tenga cada empresa (el valor esperado para el coeficiente de estas variables debe ser negativo), y el precio por tonelada del aluminio (el valor esperado para el coeficiente de esta variable debe ser positivo) .
4. En el archivo aluminio.xls, tenemos que todos los costos están expresados en $/ton, lo que significa que todos los costos presentados en el archivo son variables y por lo tanto todos deben ser considerados.
5. Como necesitamos considerar el precio por tonelada de aluminio también para que nuestra estimación sea verdaderamente una función de oferta, y el archivo aluminio.xls no presenta un precio tal cual, debemos recurrir al artículo para indagar con respecto al precio o buscar una variable proxy de el mismo.
a. En el artículo se menciona que el precio a principios de 1994 se había mantenido en de 1100 dólares por tonelada, por lo que podemos indagar que en 1993, el precio del aluminio era también de 110 dólares la tonelada, sin embargo si ponemos este precio (el mismo) para todas las fundidoras, ningún paquete econométrico te dará un resultado estimado para el coeficiente que acompaña el precio, pues simplemente lo eliminará del análisis para evitar problemas de singularidad. Entonces debemos buscar una variable proxy para el precio.
b. En el artículo se menciona que aproximadamente la mitad de las fundidoras de aluminio del mundo realizan contratos con los proveedores de electricidad en los que se acuerda atar el precio del kw por tonelada al precio del aluminio por tonelada, pero también nos dice que estos acuerdos se complican con fórmulas que establecen precios techo y precios piso, por lo que podemos ver precios de la electricidad en kw por tonelada que no reflejan en realidad la variación en el precio que se carga en realidad por tonelada de aluminio, por lo tanto los costos de la electricidad medidos en kw por tonelada no pueden ser usados como variable proxy del precio del aluminio por tonelada.
c. En el artículo también se menciona que una práctica común entre las fundidoras de aluminio es realizar contratos con los proveedores de óxido de aluminio (alumina) en los que se ata el precio de la tonelada de óxido de aluminio al precio de la tonelada de aluminio, es decir: si sube el precio de la tonelada de aluminio, pues las fundidoras de aluminio le pagan un precio mayor al proveedor de óxido de aluminio y viceversa. Además nos dice el artículo que aproximadamente la mitad de las fundidoras del mundo realiza este tipo de contratos. i. Entonces vamos a suponer que el precio de la tonelada de óxido de aluminio (Pal) suba por causa del mercado, pero el precio de la tonelada de aluminio (P) se quede sin cambio o baje. En este caso, los proveedores de óxido de aluminio estarán obligados a vender a el precio pactado su producto (que será menor al de mercado) a aquellos con los que haya pactado acuerdos, pero a los que no tenga acuerdos pactados, les buscará vender al precio de mercado, pero dado que el precio de mercado aumenta para un insumo, la oferta de aluminio de parte de las fundidoras que no tienen este tipo de contratos se reduce y por lo tanto se reduce la demanda de óxido de aluminio lo que provoca que el precio del óxido de aluminio por tonelada caiga hasta igualar el precio al que le venden el óxido de aluminio a las fundidoras con las que tienen contrato. ii. Un raciocinio similar podemos utilizar si suponemos que el precio del aluminio aumenta. iii. Por lo analizado en i y ii podemos darnos cuenta que el precio por tonelada del óxido de aluminio se moverá de la mano con el precio por tonelada de aluminio, lo que nos indica que podemos usar el precio por tonelada del óxido de aluminio como variable proxy del precio por tonelada de aluminio con el fin de poder introducir esta variable a un modelo econométrico y que este modelo econométrico represente la función de oferta y pueda ser estimado.
6. En conclusión, estimaremos la función de oferta usando como variable dependiente la capacidad, y como independientes todos los costos variables presentados en el archivo aluminio.xls, pero al costo variable llamado Total Alumina Cost (que representa el costo o precio por tonelada del óxido de aluminio), lo vamos a considerar como si fuera una variable proxy del precio por tonelada de aluminio, por lo anteriormente explicado. El valor teórico esperado para esta variable debe ser positivo.
7. Entonces vamos a tener las siguientes variables:
a. Variables Dependientes: i. Capacity : Variable proxy de la cantidad ofrecida .
b. Variables Independientes: i. Total Electricity Cost ii. Total Alumina Cost (que será la var. Proxy del precio por ton. de aluminio) iii. Other raw materials iv. Plant power and fuel v. Consumables vi. Maintenance vii. Labor viii. Freight ix. General and administrative.
8. Se utiliza el paquete econométrico Stata 10.0
9. Al correr la REGRESION 1 (ver archivo note-pad anexo), observamos que al 10% de significancia las variables Plant power and fuel, Maintenance, Freight y General and administrative no son significativas, entonces las sacamos de la estimación. El signo esperado es correcto para todos excepto para total Total electricity cost, presumiblemente porque se encuentra correlacionado con Total alumina cost. La R cuadrada ajustada es de 0.1981 y la de F es 5.28.
10. Hacemos una prueba de correlación (PRUEBA DE CORRELACION- ver archivo note-pad) entre las variables dependientes y observamos que las variables más altamente correlacionadas son Other raw materials y Total electricity cost (0.4234),además de Freight y Total Alumina cost (0.4073), Freight y Labor (0.4444) y Total alumina cost y Labor (-0.3053), pero como vamos a sacar Other Raw materials, del análisis no esperamos tener más problemas con total electricity costs y esperaríamos que el signo de Total electricity cost se corrigiera y fuera significativo. Con respecto a las otras variables correlacionadas, nos interesa dejar Total Alumina costs por ser la variable proxy del precio, así que podríamos optar por retirar también Freight y Labor o solo una de las dos, pero como Freight no fue significativa ni al 10% de confianza la quitamos y dejamos Labor.
11. Volvemos a correr sin estas variables que sacamos del análisis (REGRESION 2-ver archivo note-pad). Aquí podemos ver que ahora Total Alumina Cost ya no es significativo ni al 10% pero Total elctricity cost ahora tiene el signo esperado y es significativo. Pero dijimos que Labor presentaba correlación con Total Alumina Cost, pero Total alumina cost nos interesa. La R cuadrada ajustada es de 0.2032, una ganancia con respecto a la REGRESION 1 y la de F es 8.96.
12. Si quitamos labor del análisis (REGRESION 3-ver archivo note-pad) obtendríamos que ahora todas las variables que quedaron son significativas y presentan el signo correcto incluyendo a la variable proxy del precio: Total Alumina Cost. Sin embargo la R cuadrada ajustada se reduce a 0.1602, y la F estimada es de 8.44.
13. Entonces, el mejor modelo que tenemos para estimar la función de oferta es la REGRESION 2- Ver archivo note-pad anexo, en la que queda como variable independiente capacity, y como independientes: Total electricity cost, Total alumina cost, Other raw materials , Consumables y Labor, todas significativas al 5% y con el signo correcto a excepción de Total Alumina Cost que utilizamos como variable proxy del precio por tonelada de aluminio, que presenta el signo correcto pero ya no es significativa ni al 10%.
14. Dejaremos la variable proxy en la función de oferta a pesar de no ser significativa pues solo si tenemos el precio de la tonelada del aluminio (o una variable proxy de éste) podremos decir que es una función de oferta. Sin embargo lo anterior sugiere que la cantidad ofrecida no reacciona ante cambios en precio lo que indicaría que la industria del aluminio opera en competencia perfecta y el precio de la tonelada del aluminio iguala al costo marginal de esta industria.
Pregunta 2.
Los precios son determinados siempre por las fuerzas de oferta y demanda. Sin embargo, cuando se tiene exceso de capacidad, el precio tiende a los costos variables que presente la industria. Pregunta 3.
Los precios del aluminio fluctúan por muchas razones, tales como cambios en los precios de los insumos, pero sobre todo por cambios abruptos en la demanda. Pregunta 4.
El seguir construyendo exceso de capacidad sirve para dar señales a los posibles competidores de que no entren a la industria. Lo que debemos ver es si la empresa es capaz de cubrir sus costos variables, cuando ofrece su producto, lo que intrínsecamente nos dice que debemos estimar o conocer la demanda de aluminio. De ser así, el exceso de capacidad le permitirá sacar provecho de las variaciones cíclicas a la alza del precio del aluminio.

Similar Documents

Free Essay

Aluminum

...Aluminum Aluminum is a silvery white member of boron group of chemical elements. It has Al as a symbol, and its atomic number is 13. Aluminum is not soluble in water under normal circumstances. Aluminum considered as the third most abundant element, and the most abundant metal. It makes up about 8% by weight of the Earth's solid surface. Aluminum metal is a very reactive metal .It is found combined in 270 different minerals. Aluminum History In 1761, Guyton de Morveau suggested calling the base alum alumina. In 1808, Humphry Davy identifies the existence of a metal base of alum. The metal was first produced in 1825 in an impure form by physicist and chemist Hans Christian Ørsted. He react anhydrous aluminum chloride with potassium amalgam, yielding a lump of metal looking similar to tin. Friedrich Wöhler was aware of these experiments and cited them, but after redoing the experiments of Ørsted he concluded that the metal was pure potassium. He conducted a similar experiment in 1827 by mixing anhydrous aluminum chloride with potassium and yielded aluminum. Aluminum Characteristics There are many characteristics of aluminum, and here i will talk about two types of aluminum characteristics:- 1- Physical characteristics: Aluminum is a soft, durable, lightweight, and malleable metal with appearance ranging from silvery to dull gray, depending on the surface roughness. A fresh film of aluminum film serves as a good of visible light and an excellent reflector of...

Words: 1080 - Pages: 5

Premium Essay

Lme Aluminum

...Alusaf Hillside Project 1. Is primary aluminum production an attractive industry? Why or why not? I consider primary aluminum production is not an attractive industry because : a. The product is identical (ie, aluminum), all the companies procure the same resources to make production with same production line and process. The firms only differentiate in terms of controlling and lowering the variable cost in order to make a profit as a price-takers. Pricing is somehow fix in global level as aluminum is openly traded in the financial market. b. Intensive rivalry and perfect competition. Since the collapse of the Soviet Union and Russia and the other former Soviet states surged the supply and flooded world markets while having price remains historical low in 1993. 2. At the market price of $1,110 per ton, given the supply curve you have derived, how much would be supplied under the assumption that all plants are profit maximizers? If all plants are profit maximizers, the capacity will be landed at where average variable cost = price, ie, $1,110. From the industry 1993 supply curve, the capacity at 19,412 thousands tpy when variable cost close to $1,110 (to be exact at $1,108.02). 3. At what rate do you expect primary aluminum demand to grow over the coming years (note that primary aluminum demand is total demand less scrap production)? What do you expect the price of aluminum to be in 5 years from 1993? From the industry supply curve, the capacity...

Words: 334 - Pages: 2

Free Essay

Aluminum Paint

...Experts recommended grounding the tanks because it would protect them from lightning strikes and static electricity (Meyer, 2010). In addition, experts also recommended storing only noncombustible materials in tanks that were painted with products that contained aluminum powder because aluminum powder is a pyrophoric material (Meyer, 2010). Naturally the hazardous condition would be virtually eliminated by only storing noncombustible materials in the tanks. According to Meyer (2010) once the solvent in the coating has evaporated what remains of the paint should be considered a flammable and in the case of aluminum dust remnants, pyrophoric as stated above. Using paint consisting of aluminum already creates a risk of fire and explosion. Add to that an ignition source and a tank full of combustibles, and one could see to what extent that would add to an already hazardous situation (Meyer, 2010). Titanium much like other metal such as aluminum is not hazardous in bulk form. However, as in the case of aluminum, it becomes a pyrophoric material in its finely divided form. Through the fabrication process of metals, remnants of leftover titanium are considered pyrophoric and pose a significant risk of fire and explosion (Meyer, 2010). During the production process titanium remnants have the potential to react with atmospheric moister and cause the hydrogen to combust and can self-ignite (Meyer, 2010). The Use of automatic sprinkler systems can be an effective fire suppressant...

Words: 254 - Pages: 2

Free Essay

Aluminum in South Africa

...Aluminum Assignment 2. We predict in the next several years that the primary aluminum demand will increase, but at a slower rate that it has been historically. * We predict a temporary increase in aluminum pricing due to production restrictions imposed by CIS and US producers beginning in 1994. However, the price reduction will be temporary, as the LME warehouses have inventory at historic highs of 2.5 thousand tons of aluminum, which could be sold at any time. Furthermore, the US has agreed to temporarily idle production of 950 thousand tons of aluminum in an attempt to inflate prices. However, this is a short term solution, as production cannot be idled for a long period of time without severe damage to the aluminum production line. * The consumption of aluminum by the Western world has increased over the last 5 years, but at a much slower rate than in the past 10 years. Additionally, the secondary aluminum market has been increasing, and serves as competition for the primary aluminum market. By 1994, the secondary aluminum made up 25% of worldwide product and saw a 5 year CAGR of 3.7%, while the CAGR for primary aluminum had decreased to a rate of 1.4% worldwide. The startup cost for a secondary aluminum plant is far lower than that of a primary aluminum plant. The operational cost of the secondary aluminum plant is far lower than that of a primary aluminum plant, requiring about 5% of the energy needed to operate a primary aluminum plant. As a result, there will...

Words: 839 - Pages: 4

Premium Essay

Recycling Aluminum Synthesis

...In this experiment the objective is to synthesize alum using a potential method for recycling aluminum with an aluminum can and to evaluate the synthesis of the alum. Aluminum represents about 1% of the United States Gross Domestic Product, which is equivalent to about 150 billion dollars. Not only does it impact the society financially, but it also creates approximately 670,000 jobs for Americans⁴. Effectively reproducing and reusing products such as aluminum creates many job opportunities as well as always allowing American to have the easy access to aluminum. But best of all, the process of recycling aluminum uses 90% less energy than the process of producing new aluminum does⁴. Aluminum is produced by Bauxite (ore) in a very long and extensive...

Words: 608 - Pages: 3

Free Essay

Aluminum Matrix Composite

...Aluminum matrix * Continuous fibers: boron, silicon carbide, alumina, graphite * Discontinuous fibers: alumina, alumina-silica * Whiskers: silicon carbide * Particulates: silicon carbide, boron carbide STIR CASTING METHOD OF FABRICATION OF MMCs * Liquid state fabrication of Metal Matrix Composites involves incorporation of dispersed phase * into a molten matrix metal, followed by its Solidification. * In order to provide high level of mechanical properties of the composite, good interfacial * bonding (wetting) between the dispersed phase and the liquid matrix should be obtained. * Wetting improvement may be achieved by coating the dispersed phase particles (fibers). Proper * coating not only reduces interfacial energy, but also prevents chemical interaction between the * dispersed phase and the matrix. * The simplest and the most cost effective method of liquid state fabrication is Stir Casting. * 26 * Stir Casting * Stir Casting is a liquid state method of composite materials fabrication, in which a dispersed * phase (ceramic particles, short fibers) is mixed with a molten matrix metal by means of * mechanical stirring. * The liquid composite material is then cast by conventional casting methods and may also be * processed by conventional Metal forming technologies. * Stir Casting is characterized by the following features: * Content of dispersed phase is limited (usually not more than...

Words: 3738 - Pages: 15

Premium Essay

He Aluminum Industry in 1994

...The Aluminum Industry in 19941  and  Aluminum Smelting in South Africa: Alusaf’s Hillside Project2  1) Is primary aluminum production an attractive industry? Why or why not?  Within the framework of the Structure-Conduct-Performance (SCP) model3, the primary aluminum production industry (“the industry”) in 1994 can be described as perfectly competitive. The industry is characterized by a large number of competing firms – the largest of which has only 4.1% of total industry capacity; homogeneous, commodity-type products and low-cost entry and exit into and out of the industry (assuming capital is available where returns are greater than cost of entry). Within the industry, market prices are established via a commodities exchange (the London Metal Exchange, or LME) and individual firms have little ability to set market prices. In a perfectly competitive industry social welfare is maximized – due largely to the lack of product differentiation and the number of competitors, while expected firm performance is normal.  In the early 1990’s the collapse of the Soviet military caused Russian and other Soviet State smelters to flood the market with capacity that had previously supplied military needs. During 1993, LME inventories of primary aluminum increased by nearly a million tons, to over 2.5 million tons, while producer inventories increased by over 300,000 tons. This surge in supply & inventory levels drove world aluminum prices to all-time lows - $1,110/ton at the end...

Words: 1568 - Pages: 7

Premium Essay

Aluminum Bats vs. Wooden Bats

...Kelly Thomer Sports History Why Aluminum Bats should be Banned from the NCAA Crack! That was the sound of our nation's pastime in the early days of baseball. For nearly 125, years the wooden bat was used in every level of baseball. In Tom's River, New Jersey, the little league World Series is held every summer. Ping! This is the only sound that a spectator will hear during one of those baseball games. What happened to the old-fashioned crack of the bat? The wooden bat has been used in professional baseball since the game's establishment in 1864. An aluminum bat is more dangerous than a wooden bat due to the advanced technology of the aluminum bat, but offers a greater impact to a ball than a wooden bat could. For college ball players hoping to make it to the majors, they should be using the equipment required by the MLB in order to be the most prepared. Also, it makes it harder for scouts to determine how a player will perform under different conditions. This is why I believe the NCAA should play with the same standards as the MLB. The baseball bat controversy has been lingering over amateur baseball since the NCAA (National Collegiate Athletic Association) allowed the use of aluminum bats for the first time in 1974 (Adelson). Every year there is another injury to a pitcher as a result of the aluminum bat due to its exit velocity. The exit velocity of a ball plays a key role in determining the level of risk of injury. It is defined as the speed of the ball off the...

Words: 2293 - Pages: 10

Free Essay

State of the Science on Aluminum Structural Bridge Components

...State of the Science Although research on in-place aluminum bridge decks is scant, bridge failures and deteriorations over the past decade inspired engineers toward determining the structural integrity of aluminum alloys in bridge rehabilitation. Recent studies, examining the corrosive effects of acidic and salt atmosphere on aluminum bridge decks indicates the material is expected to endure for at least 30-years (Li, et al., 2010). Furthermore, the Virginia Department of Transportation conducted a series of tests, including service and ultimate load test using Reynold’s deck system (Dobmeier, 2001). The results of Dobmeier, et al.’s (2001) experiment, “clearly demonstrates that aluminum bridge decks are a feasible alternative to reinforced concrete decks”. When considering alternatives for bridge deck replacements, the structural engineer must evaluate the life cost of materials chosen. Specifically, although the material cost for aluminum bridge decks is higher than for structural steel, the cost for fabrication, construction and length of serviceability prove cost effective when compared to steel (Ghaswala, 2010; Tindall, 2008; Walbridge & de la Chevrotiere, 2012). Specifically, with a per unit weight that is about one-third that of structural steel, construction methods are simplified and time for rehabilitation reduced (Ghaswala, 2010). Furthermore, maintenance costs are greatly reduced with aluminum decks, which eliminate the need for protective coating (beyond...

Words: 1490 - Pages: 6

Free Essay

Dangers of Aluminum Powdered Tanks and Titanium Machining Shops

...Title of Paper Name School Chemistry Instructor's Name Feb 01, 2015. Dangers of Aluminum Powdered Tanks and Titanium Machining Shops Experts have suggested that storage tanks that were formerly painted with products containing aluminum powder should be grounded. The aluminum powder was initially mainly meant to reflect heat from these tanks. Furthermore it was also recommended that only non-combustible material should be stored in these tanks since the aluminum powder is a pyrophoric substance. Grounding the storage tanks will help in avoiding development of static charges on the tanks which might cause an ignition of fire especially if combustible material is in the tank. Experts also suggest that grounding them will reduce the chances of a lightning strike. Meyer (2010) argues that if only nonflammable material is stored in these tanks, the risk of fire and explosions will be greatly reduced Every machining or milling shop should have in place a plan for preventing and suppressing fires. Most businesses that close due to fires never reopen. In whole large sizes, titanium is not very dangerous. Lathe machines, during fabrication process, produces very fine grains of titanium. When titanium chips and grains get very hot, hey ignite readily. They pose a danger of fire and explosion to lathe machine operations. Such fires ignited by metals are classified under class D fires. They are considered fatal since the fires are of a high temperature and rapidly react with water...

Words: 351 - Pages: 2

Free Essay

Alcoa Began Under the Name of the Pittsburgh Reduction Company in 1888, Changing Its Name to the Aluminum Company of America (Alcoa) In1907

...Alcoa began under the name of the Pittsburgh Reduction Company in 1888, changing its name to the Aluminum Company of America (Alcoa) in1907. The company was originally founded on a $20,000 investment to capitalize on Charles Martin Hall’s invention to smelt bauxite ore into the metal known as aluminum. Within a few years, Alcoa had developed into a model of large-scale vertical integration with control over all the inputs to aluminum production. Since its inception, Alcoa has had a very strong values-based culture. Employees learned early in their careers that very decision they made and everything they did must be aligned with the company’s values. In 1985, Fred Fetterolf, then president, decided the company needed to document the values that all employees must live by; Integrity; Environment, Health, and Safety; Customer; Accountability; Excellence; People; and Profitability. (In 2012, Alcoa slightly revised its core values – Integrity; Environmental; Health and safety; Excellence ; Respect and Innovation) In the 1990s Alcoa’s CEO, Paul O’Neil, communication his answering belief in the importance of health and safety-one of the company’s core values. As is the case with many large organizations, Alcoa had implemented a global ethics and compliance program, and focus on health and safety was interwoven through the company’s program. The Alcoa program included all the basic elements specified in the U.S Federal Sentencing Guidelines and Sarbanes –Oxley Act. Alcoa had...

Words: 2344 - Pages: 10

Free Essay

Aluminium Foil

...are full of small things that make a big difference. Aluminum foil is one of the small things in life that can be easily overlooked, and yet it plays a very large role in making life easy for all of us. Because of it’s history, how its made, and how its used, aluminum foil has changed the way we live. To understand the many uses of aluminum foil and how it has made life easier, the history of where aluminum foil came from, needs to be understood. Because aluminum was not made into the foil used today until the 19th century, it is best that we trace the many uses for aluminum in other forms. Aluminum was being used in ancient Egypt where they used alumina, an aluminum compound, for various medicinal uses. It was mostly used for mixing with other compounds to make the desired medication (aluminum foil). It was not until the early 1800s that someone tried to create aluminum for a practical use. In 1807 Sir Humphry Davy was the first person to try and create pure aluminum from minerals found in the earth. Davy was a British scientist and was the first person to identify and create pure substances that only existed in in other forms through electrolysis (Sir Humphry). He was unsuccessful in isolating aluminum but his ingenuity lit the way for many successors. Sir Humphry Davy inspired others to try and create a solid aluminum ingot. “Danish physicist and chemist, Hans Christian Ørsted, in 1825 finally produced aluminum. ‘It forms,’ Ørsted reported, ‘a lump of metal which...

Words: 2387 - Pages: 10

Premium Essay

Sssss

...piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at 90.0°C is placed in 4.00 litersA 1.00kg piece of aluminum metal at...

Words: 625 - Pages: 3

Premium Essay

Demand

...Side of the Market Every market has a demand side and a supply side. The demand side can be represented by a market demand curve, which shows the amount of the commodity buyers would like to purchase at different prices. For example, the market demand curve for aluminum in Figure 1-3 shows that 4 million pounds of aluminum would be demanded annually at the price of $1.50 per pound (point A), 6 million pounds would be demanded at the price of $1.00 per pound (point E), and 8 million pounds would be demanded at the price of $0.50 per pound (point B). Note that more aluminum would be demanded annually at lower prices; that is, the demand curve for aluminum slopes downward to the right. This is true for practically all commodities and is referred to as the law of demand. Demand curves are drawn on the assumption that buyers' tastes, buyers' incomes, the number of consumers in the market, and the price of related commodities (substitutes and complements) are unchanged. Changes in any of these factors will cause a demand curve to shift. For example, if consumers' tastes for aluminum products or consumers' incomes increase, the entire demand curve for aluminum shifts to the right, indicating that buyers will purchase more aluminum at each price annually. More will be said on market demand...

Words: 2296 - Pages: 10

Free Essay

Vershire Company

...Vershire Company Vershire Company & Aluminum Industry Industry of Aluminum: Aluminum. Less spillage or breakage, ease of storage at home or when people travel, maintenance of soft drink carbonation, ease of lithograph and ease of recycling, aluminum production is one of the modern era’s great economic stories. The world’s primary aluminium industry produces over 23 millions ton of aluminium metal per year. The most important markets for aluminium products are the transport, building and packaging sectors, however aluminium also finds application in electrical and mechanical engineering, office equipment, domestic appliances, lighting, chemistry and pharmaceuticals. The United States' aluminum industry is the world's largest, annually producing about $39.1 billion in products and exports. U.S. companies are the largest single producer of primary aluminum. The U.S. industry operates over 300 plants in 35 states , produces more than 23 billion pounds of metal annually and employs over 145,000. Aluminum is one of the few products and industries left in America that truly impacts every community in the country, either through physical plants and facilities, recycling, heavy industry, or consumption of consumer goods. The aluminum industry's performance is noteworthy, particularly in light of the proliferation of alternative materials and global competition. Transportation represents the largest market for aluminum in the United States. In 2000, transportation accounted for 32.5...

Words: 1140 - Pages: 5