Free Essay

Arificial Neural Network

In:

Submitted By safwan
Words 3437
Pages 14
A Review of ANN-based Short-Term Load Forecasting Models
Y. Rui A.A. El-Keib

Department of Electrical Engineering University of Alabama, Tuscaloosa, AL 35487

Abstract - Artificial Neural Networks (AAN) have recently been receiving considerable attention and a large number of publications concerning ANN-based short-term load forecasting (STLF) have appreared in the literature. An extensive survey of ANN-based load forecasting models is given in this paper. The six most important factors which affect the accuracy and efficiency of the load forecasters are presented and discussed. The paper also includes conclusions reached by the authors as a result of their research in this area. Keywords: artificial neural networks, short-term load forecasting models

Introduction
Accurate and robust load forecasting is of great importance for power system operation. It is the basis of economic dispatch, hydro-thermal coordination, unit commitment, transaction evaluation, and system security analysis among other functions. Because of its importance, load forecasting has been extensively researched and a large number of models were proposed during the past several decades, such as Box-Jenkins models, ARIMA models, Kalman filtering models, and the spectral expansion techniques-based models. Generally, the models are based on statistcal methods and work well under normal conditions, however, they show some deficiency in the presence of an abrupt change in environmental or sociological variables which are believed to affect load patterns. Also, the employed techniques for those models use a large number of complex relationships, require a long computational time, and may result in numerical instabilities. Therefore, some new forecasting models were introduced recently. As a result of the development of Artificial Intelligence (AI), Expert System (ES) and Artificial Neural Networks (ANN) have been applied to solve the STLF problems. An ES forecasts the load according to rules extracted from experts' knowledge and operators' experience. This method is promising, however, it is important to note that the expert opinion may not always be consistent, and the reliability of

such opinion may be in question. Over the past two decades, ANNs have been receiving considerable attention and a large number of papers on their application to solve power system problems has appeared in the literature. This paper presents an extensive survey of ANN-based STLF models. Although many factors affect the accuracy and efficiency of the ANN-based load forecaster, the following six factors are believed to be the most important ones. In section 2, various kinds of Back-Propagation (BP) network structures are presented and discussed. The selection of input variables is reviewed in section 3. In section 4, different ways of selecting the training set are presented and evaluated. Because of the drawbacks of the BP algorithm, some efficient modifications are discussed in section 5. In section 6 and 7, the determination of the number of hidden neurons and the parameters of the BP algorithm are respectively presented. Conclusions follow in section 8.

The BP network structures
Artificial Neural Networks have parallel and distributed processing structures. They can be thought of as a set of computing arrays consisting of series of repetitive uniform processors placed on a grid. Learning is achieved by changing the interconnection between the processors [1]. To date, there exists many types of ANNs which are characterized by their topology and learning rules. As for the STLF problem, the BP network is the most widely used one. With the ability to approximate any continuous nonlinear function, the BP network has extraordinary mapping (forecasting) abilities. The BP network is a kind of multilayer feed forward network, and the transfer function within the network is usually a nonlinear function such as the Sigmoid function. The typical BP network structure for STLF is a three-layer network, with the nonlinear Sigmoid function as the transfer function [2-8]. An example of this network is shown in Figure 1. In addition to the typical Sigmoid function, a linear transfer function from the input layer directly to the output layer as shown in Figure 2 was proposed in [9] to account

for linear components of the load. The authors of [9] have reported that this approach has improved their forecasting results by more than 1%.

Figure 1 A typical BP network structure

forecasting error over the period of a whole year has improved considerably. It is proven that a 3-layer ANN with suitable dimension is sufficient to approximate any continuous non-linear function. In [13], it is illustrated that the 4-layer structure is easier to be trapped in a local minima while possesing the other features of the 3-layer ANNs. However, attracted by the compact architecture and efficiency of the learning process of the 4-layer ANN, a load forecaster using this structure was recoomended in [1,14] and promising results were reported. Based on the above discussion, the topology of BP network can be of 3-layers or 4-layers, the transfer function can be linear, nonlinear or a combination of both. Also, the network can be either fully connected or non-fully connected. From our experience we have found that the BP network structure is problem dependent, and a structure that is suitable for a given power system is not necassarily suitable for another.

Input variables of BP network
As was pointed out earlier, the BP network is a kind of array which can realize nonlinear mapping from the inputs to the outputs. Therefore, the selection of input variables of a load forecasting network is of great importance. In general, there are two selection methods. One is based on experience [1,3,9,14], and the other is based on statistical analysis such as the ARIMA [11] and correlation analysis [6]. If we denote the load at hour k as l(k), a typical selection of inputs based on operation experience will be l(k-1), l(k-24), t(k-1), etc., where t(k) is the temperature corresponding to the load l(k). Unlike those methods which are based on experience, [6] applies auto-correlation analysis on the historical load data to determine the input variables. Auto-correlation analysis shows that correlation of peaks occurs at the multiples of 24 hour lags. This indicates that the loads at the same hours have very strong correlation with each other. Therefore, they can be chosen as input variables. In [11], the authors apply ARIMA procedures and auto-correlation analysis to determine the necessary load related inputs. After load related inputs are determined, the corresponding temperature related inputs are determined. The authors in [10] discuss the method of using ANN to forecast the load curve under extreme climatic conditions. In addition to using conventional information such as historical loads and temperature as input variables, wind-speed, sky-cover are also chosen. In all, the input variables can be classified into 8 classes: 1. historical loads [1-3,6,7,9-12,15]

Figure 2 An ANN Structure with linear transfer function Because fully connected BP networks need more training time and are not adaptive enough to temperature changes, a non-fully connected BP model is proposed in [10,11]. The reported results show that although a fully connected ANN is able to capture the load characteristics, a non-fully connected ANN is more adaptive to respond to temperature changes. The results also show that the forecasting accuracy is significantly improved for abrupt temperature changing days. Moreover, [11] presents a new approach of which combines several sub-ANNs together to give better forecasting results. Recently, a recurrent high order neural network (RHONN) is proposed [12]. Due to its dynamic nature, the RHONN forecasting model is able to adapt quickly to changing conditions such as important load variations or changes of the daily load pattern. It is reported in [12] that the

2. historical and future temperatures [1-3,6,9-11,15] 3. hour of day index [1,3,4,6,11] 4. day of week index [1,4,6,11] 5. wind-speed [4,10] 6. sky-cover [4,10] 7. rainfall [4] 8. wet or dry day [4]. There are no general rules that can be followed to determine input variables. This largely depends on engineering judgment and experience. Our investigations revealed that for a normal climate area, the first 4 classes of variables are sufficient to give acceptable forecasting results. However, for an extreme weather-conditioned area the later 4 classes are recommended, because of the highly nonlinear relationship between the loads and the weather conditions.

Selection of training set
ANNs can only perform what they were trained to do. As for the case of STLF, the selection of the training set is a crucial one. The criteria for selecting the training set is that the characteristics of all the training pairs in the training set must be similar to those of the day to be forecasted. Choosing as many training pairs as possible is not the correct approach for the following reasons: i) Load periodicity. The 7 days of a week have rather different patterns. Therefore, using Sundays' load data to train the network which is to be used to forecast Mondays' loads would yield wrong results. ii) Because loads posses different trends in different periods, recent data is more useful than old data. Therefore, a very large training set which includes old data is less useful to track the most recent trends. As discussed in i), to obtain good forecasting results, day type information must be taken into account. There are two ways to do this. One way is to construct different ANNs for each day type, and feed each ANN with the corresponding day type training sets [6,15]. The other is to use only one ANN but contain the day type information in the input variables [1,7,11]. The two methods have their advantages and disadvantages. The former uses a number of relatively small size networks, while the later has only one network of a relatively large size. In [9], the authors realized that the selection of the training cases significantly affect the forecasting result, and developed a selection method based on the "least distance criteria". Using this approach, the forecasting results have shown significant improvement. It is worth noting that the day type classification is system dependent. For instance, in some systems, Mondays' load may be similar to that of Tuesdays', but in others this will not be true. A typical classification given in [1] categarizes the

historical loads into five classes. These are Monday, Tuesday-Thursday, Friday, Saturday, and Sunday/Public holiday. A different way, used in [2], collects the data with characteristics similar to the day being forecasted, and combines these data with the data from the previous 5 days to form a training set. In addition to the above conventional day type classification methods, some unsupervised ANN models are used to identify the day type patterns. The unsupervised learning concept, also called self-organization can be effectively used to discover similarities among unlabeled patterns. An unsupervised ANN is employed in [5,14] to identify the different day types. In all, because of the great importance of appropriate selection of the training set, several day type classification methods are proposed, which can be categorized into two types. One includes conventional method which uses observation and comparison [1,2,9]. The other, is based on unsupervised ANN concepts and selects the training set automatically [10,14].

Modification of the BP algorithm
The BP algorithm is widely used in STLF and has some good features such as, its ability to easily accommodate weather variables, and its implicit expressions relating inputs and outputs. However, it also has some drawbacks. These are its time consuming training process and its convergence to local minima. The authors of [16] report their investigation of the problem and point out that one of the major reasons for these drawbacks is "premature saturation," which is a phenomenon that remain constant at a significantly high value for some period of the time during the learning process. A method to prevent this phenomenon by the appropriate selecting of the initial weights is proposed in [16]. In [17], the authors discuss the effects of the momentum factor to the algorithm. The original BP algorithm does not have a momentum factor and is difficult to converge. The BP algorithm with momentum (BPM) converges much faster than the conventional BP algorithm. In [3,18], it is shown that the use of the BPM in STLF significantly improves the training process. The authors of [8] present extensive studies on the effects of various factors such as the learning step, the momentum factor to BPM. They proposed a new learning algorithm for adaptive training of neural networks. This algorithm converges faster than the BPM, and makes the selection of initial parameter much easier. A new learning algorithm motivated by the principle of "forced dynamic" for the total error function is proposed in [19]. The rate of change of the network weights is chosen

such that the error function to be minimized is forced to "decay" in a certain mode. Another modified approach to the conventional BP algorithm is proposed in [20]. The modification consists of a new total error function. This error function updates the weights in direct proportion to the total error. With this modification, the periods of stagnation are much shorter and the possibility of trapping in a local minima is greatly reduced.

There are no general rules to obtain an optimal learning step. The values used in [1,4,14] are 0.9, 0.25, and 0.05 respectively. iii). Momentum factor Like the learning step, the momentum factor is also system dependent. The values chosen by [1,4,14] are 0.6, 0.9, and 0.9 respectively. In contrast to the learning step whose value can be larger than 1.0, the upper limit of the momentum factor is 1.0 [18]. This upper limit can be obtained from the physical meaning of momentum factor. It is the forgetting factor of the previous weight changes. The algorithm diverges if the value of the momentum factor is greater than 1.0 is used. The authors of [8] compare the efficiency and accuracy of the neural network using different learning steps and momentum factors, and show that with an adaptive algorithm, the parameters can be chosen from a much wider range. In our investigation, we have observed that the initial weights with values between -0.5 and 0.5 yield good results. As for the learning step and the momentum factor, they should not be fixed but gradually decreased with the increase of the iteration index. Using an adaptive algorithm such as the one proposed by [8] would yield a more stable algorithm.

Number of hidden neurons
Determination the optimal number of hidden neurons is a crucial issue. If it is too small, the network can not posses sufficient information, and thus yields inaccurate forecasting results. On the other hand, if it is too large, the training process will be very long [1]. The authors in [21] discuss the number of hidden neurons in binary value cases. In order to make the mapping between the output value and input pattern arbitrary for I learning patterns, the necessary and sufficient number of hidden neurons is I-1. The authors of [22] also state that a multilayer perceptron with k-1 hidden neurons can realize arbitrary functions defined on a k-element set. Up to our knowledge, there is no absolute criteria to determine the exact number of hidden neurons that will lead to an optimal solution. Different numbers of hidden neurons are used in [1,10,11,14]. Based on our experience, the appropriate number of hidden neurons is system dependent, mainly determined by the size of the training set and the number of input variables.

Conclusions
A summary of an extensive survey of existing ANN-based STLF models is presented. Six factors which are believed to have a considerable effect on the accuracy, reliability, and robustness of the models are emphasized The surveyed publications and the authors' own experience lead to the conclusion that the ANN structure, input variables, number of hidden neurons, and BP algorithm parameters are mainly system dependent. The development of a more general ANN model to handle the STLF problem is a challenging problem and should be investigated timely.

Parameters of the BP algorithm
Three parameters need to be determined before BP network can be trained and is able to forecast. These are i) Weights: The initial weights should be small random numbers. It is proven that if the initial weights in the same layer are equal, the BP algorithm can not converge [18]. ii) Learning step: The effectiveness and convergence of the BP algorithm depend significantly on the value of the learning step. However, the optimum value of the learning step is system dependent. For systems which posses broad minima that yield small gradient values, a large value of the learning step will result in a more rapid convergence. However, for a system with steep and narrow minima, a small value of learning step is more suitable [24].

References
[1]D. Srinivasan, A neural network short-term load forecaster, Electric Power Research, pp. 227-234, 28 (1994). [2]O. Mohammed, Practical Experiences with an Adaptive Neural Network short-term load forecasting system, IEEE/PES 1994 Winter Meeting, Paper # 94 210-5 PWRS. [3]D.C. Park, Electric load forecasting using an

artificial neural network, IEEE Trans. on Power Systems, Vol. 6, No. 2, pp. 412-449, May 1991. [4]T.S. Dillon, Short-term load forecasting using an adaptive neural network, Electrical Power & Energy Systems, pp. 186-191, 1991. [5]M. Djukanvic, Unsupervised/supervised learning concept for 24-hour load forecasting, IEE Proc.-C, Vol. 140, No. 4, pp. 311-318, July, 1993. [6]K.Y. Lee, Short-Term Load Forecasting Using an Artificial neural Network, IEEE Trans. on Power Systems, Vol. 7, No. 1, pp. 124-131, Feb. 1992. [7]C.N. Lu, Neural Network Based Short Term Load Forecasting, IEEE Trans. on Power Systems, Vol. 8, No. 1, pp. 336-341, Feb. 1993. [8]K.L. Ho, Short Term Load Forecasting Using a Multilayer neural Network with an Adaptive Learning Algorithm, IEEE Trans.on Power Systems, Vol. 7, No. 1, pp. 141-149, Feb. 1992. [9]T.M. Peng, Advancement in the application of neural networks for short-term load forecasting, IEEE/PES 1991 Summer Meeting, Paper # 451-5 PWRS. [10]B.S. Kermanshahi, Load forecasting Under extreme climatic conditions, Proceedings, IEEE Second International Forum on the Applications of Neural Networks to Power Systems, April, 1993, Yokohoma, Japan. [11]S.T. Chen, Weather sensitive short-term load forecasting using nonfully connected artificial neural networks, IEEE/PES 1991 Summer Meeting, Paper # 449-9 PWRS. [12]G.N. Kariniotakis, Load forecasting using dynamic high-order neural networks, pp. 801-805, Proceedings, IEEE Second International Forum on the Applications of Neural Networks to Power Systems, April, 1993, Yokohoma, Japan. [13]J. Villiers, Back-propagation Neural Nets with One and Two Hidden Layers, IEEE Trans. on Neural Networks, Vol. 4, No. 1, pp. 136-146, Jan. 1992. [14]Y.Y. Hsu, Design of artificial neural networks for short-term load forecasting, IEE Proc.C, Vol. 138, No. 5, pp. 407-418, Sept. 1991. [15]A.D. Papalexopoulos, Application of neural network technology to short-term system load forecasting, pp. 796-800, Proceedings, IEEE Second International Forum on the Applicaitons of Neural Networks to Power Systems, April, 1993, Yokohoma, Japan. [16]Y. Lee, An Analysis of Premature Saturation in

Back Propagation Learning, Neural Networks, Vol. 6, pp. 719-728, 1993. [17]V.V. Phansalkar, Analysis of the Back-Propagation Algorithm with Momentum, IEEE Trans. on Neural Networks, Vol. 5, No. 3, May 1994. [18]Y. Rui, P. Jin, The modelling method for ANN-based forecaster, CDC' 94, China, 1994. [19]G.P. Alexander, An Accelerated Learning Algorithm for Multilayer Perceptron Networks, IEEE Trans. on Neural Networks, Vol. 5, No. 3, pp. 493-497, May 1994. [20]A.V. Ooyen, Improving the Convergence of the Back-Propagation Algorithm, Neural Network, Vol. 5, pp. 465-471, 1992. [21]M. Arai, Bounds on the Number of Hidden units in Binary-Valued Three-Layer Neural Networks, Neural Networks, Vol. 6, pp. 855-860, 1993. [22]S.C. Huang, Bounds on the Number of Hidden Neurons in Multilayer Perceptrons, IEEE trans on Neural Networks, Vol. 2, No. 1, pp. 47-55, Jan. 1991. [23]Y.Rui, P. Jin, Power load forecasting using ANN, Journal of Hehai University, 1993. [24]J.M. Zurada, Introduction to Artificial Neural Systems, West Publishing Company, 1992.

Similar Documents

Premium Essay

Market Segmentation

...www.elsevier.com/locate/atoures Annals of Tourism Research, Vol. 32, No. 1, pp. 93–111, 2005 Ó 2005 Elsevier Ltd. All rights reserved. Printed in Great Britain 0160-7383/$30.00 doi:10.1016/j.annals.2004.05.001 MARKET SEGMENTATION A Neural Network Application Jonathan Z. Bloom University of Stellenbosch, South Africa Abstract: The objective of the research is to consider a self-organizing neural network for segmenting the international tourist market to Cape Town, South Africa. A backpropagation neural network is used to complement the segmentation by generating additional knowledge based on input–output relationship and sensitivity analyses. The findings of the self-organizing neural network indicate three clusters, which are visually confirmed by developing a comparative model based on the test data set. The research also demonstrated that Cape Metropolitan Tourism could deploy the neural network models and track the changing behavior of tourists within and between segments. Marketing implications for the Cape are also highlighted. Keywords: segmentation, SOM neural network, input–output analysis, sensitivity analysis, deployment. Ó 2005 Elsevier Ltd. All rights reserved. ´ ´ Resume: Segmentation du marche: une application du reseau neuronal. Le but de la ´ ´ recherche est de considerer un reseau neuronal auto-organisateur pour segmenter le marche ´ ´ ´ touristique international a Cape Town, en Afrique du Sud. On utilise un reseau neuronal de ` ´ retropropogation pour...

Words: 7968 - Pages: 32

Free Essay

It521-2: Analyze Business Intelligence Systems

... 2011, p. 282, para. 2) One important issue with beer is flavor. Typically, the flavor is determined by test panels. These tests are usually time-consuming. Coors wants to understand the chemical composition of flavors and if they knew that, it would open doors that have not been opened yet. “The relationship between chemical analysis and beer flavor is not clearly understood yet” (Turban, Sharda, & Delen, 2011, p. 282, para. 3). There is data on sensory analysis and chemical composition and Coors needs a way to link them together. The answer was Neural networks. Neural Networks The simplist defination of Neural Networks, more referred to as an ‘Artificial neural network’ (ANN) is defined by Dr. Robert Hecht-Nielsen, as a “computer system made up of a number of simple, highly interconnected processing elements, which process information by their dynamic state response to external inputs” (A Basic Introduction To Neural Networks, n.d.). With different interconnected layers such as many input layers, one output layers; one operation called the training operation, one could add many inputs (variables) into the system to reach the desired outcome. However at first it must be said that in order to reach the desired outcome, many inputs have to be entered over and over again and changing...

Words: 941 - Pages: 4

Free Essay

Stereoscopic Building Reconstruction Using High-Resolution Satellite Image Data

...Stereoscopic Building Reconstruction Using High-Resolution Satellite Image Data Anonymous submission Abstract—This paper presents a novel approach for the generation of 3D building model from satellite image data. The main idea of 3D modeling is based on the grouping of 3D line segments. The divergence-based centroid neural network is employed in the grouping process. Prior to the grouping process, 3D line segments are extracted with the aid of the elevation information obtained by using area-based stereo matching of satellite image data. High-resolution IKONOS stereo images are utilized for the experiments. The experimental result proved the applicability and efficiency of the approach in dealing with 3D building modeling from high-resolution satellite imagery. Index Terms—building model, satellite image, 3D modeling, line segment, stereo I. I NTRODUCTION Extraction of 3D building model is one of the important problems in the generation of an urban model. The process aims to detect and describe the 3D rooftop model from complex scene of satellite imagery. The automated extraction of the 3D rooftop model can be considered as an essential process in dealing with 3D modeling in the urban area. There has been a significant body of research in 3D reconstruction from high-resolution satellite imagery. Even though a natural terrain can be successfully reconstructed in a precise manner by using correlation-based stereoscopic processing of satellite images [1], 3D building reconstruction...

Words: 2888 - Pages: 12

Free Essay

Hurst Wx

...stronger trend. In this paper we investigate the use of the Hurst exponent to classify series of financial data representing different periods of time. Experiments with backpropagation Neural Networks show that series with large Hurst exponent can be predicted more accurately than those series with H value close to 0.50. Thus Hurst exponent provides a measure for predictability. KEY WORDS Hurst exponent, time series analysis, neural networks, Monte Carlo simulation, forecasting In time series forecasting, the first question we want to answer is whether the time series under study is predictable. If the time series is random, all methods are expected to fail. We want to identify and study those time series having at least some degree of predictability. We know that a time series with a large Hurst exponent has strong trend, thus it’s natural to believe that such time series are more predictable than those having a Hurst exponent close to 0.5. In this paper we use neural networks to test this hypothesis. Neural networks are nonparametric universal function approximators [9] that can learn from data without assumptions. Neural network forecasting models have been widely used in financial time series analysis during the last decade [10],[11],[12]. As universal function approximators, neural networks can be used for surrogate predictability. Under the same conditions, a time series with a smaller forecasting error than another is said to be more predictable. We study the Dow-Jones...

Words: 1864 - Pages: 8

Free Essay

Ebusiness-Process-Personalization Using Neuro-Fuzzy Adaptive Control for Interactive Systems

...International Review of Business Research Papers Vol.2. No.4. December 2006, Pp. 39-50 eBusiness-Process-Personalization using Neuro-Fuzzy Adaptive Control for Interactive Systems Zunaira Munir1 , Nie Gui Hua2 , Adeel Talib3 and Mudassir Ilyas4 ‘Personalization’, which was earlier recognized as the 5th ‘P’ of e-marketing , is now becoming a strategic success factor in the present customer-centric e-business environment. This paper proposes two changes in the current structure of personalization efforts in ebusinesses. Firstly, a move towards business-process personalization instead of only website-content personalization and secondly use of an interactive adaptive scheme instead of the commonly employed algorithmic filtering approaches. These can be achieved by applying a neuro-intelligence model to web based real time interactive systems and by integrating it with converging internal and external e-business processes. This paper presents a framework, showing how it is possible to personalize e-business processes by adapting the interactive system to customer preferences. The proposed model applies Neuro-Fuzzy Adaptive Control for Interactive Systems (NFACIS) model to converging business processes to get the desired results. Field of Research: Marketing, e-business 1. Introduction: As Kasanoff (2001) mentioned, the ability to treat different people differently is the most fundamental form of human intelligence. "You talk differently to your boss than to...

Words: 4114 - Pages: 17

Free Essay

Exam Paper Ml

...MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, 23 2013 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, use an additional sheet (available from the instructor) and staple it to your exam. • NAME • UTD-ID if known • SECTION 1: • SECTION 2: • SECTION 3: • SECTION 4: • SECTION 5: • Out of 90: 1 CS 6375 FALL 2013 Midterm, Page 2 of 13 October 23, 2013 CS 6375 FALL 2013 Midterm, Page 3 of 13 October 23, 2013 SECTION 1: SHORT QUESTIONS (15 points) 1. (3 points) The Naive Bayes classifier uses the maximum a posteriori or the MAP decision rule for classification. True or False. Explain. Solution: True. The decision rule for the Naive Bayes classifier is: P (Xi |Y = y) arg; max P (Y = y) y i One can think of P (Y = y) as the prior distribution and P (Xi |Y = y) as the data likelihood. Note that when we do the learning, we are using the MLE approach. The decision rule is using MAP inference but the learning algorithm is using the MLE approach. Make sure you understand what this distinction means. 2. (6 points) Let θ be the probability that “Thumbtack 1” (we will abbreviate it as T1) shows heads and 2θ be the probability that “Thumbtack 2” (we will abbreviate it as T2) shows heads. You are given the following Dataset (6 examples). T1 Tails T2 Heads T1 Tails T1 Tails T2 Heads T2 ...

Words: 2270 - Pages: 10

Premium Essay

Extreme Makeover: Walmart Edition

...2 CHAPTER 2.1 2.2 2.3 Decision Making and Business Processes Why Do I Need To Know This LEARNING OUTCOMES Explain the difference between transactional data and analytical information, and between OLTP and OLAP. Define TPS, DSS, and EIS, and explain how organizations use these types of information systems to make decisions. Understand what AI is and the four types of artificial intelligence systems used by organizations today. Describe how AI differs from TPS, DSS, and EIS. Describe the importance of business process improvement, business process reengineering, business process modelling, and business process management to an organization and how information systems can help in these areas. This chapter describes various types of business information systems found across the enterprise used to run basic business processes and used to facilitate sound and proper decision making. Using information systems to improve decision making and re-engineer business processes can significantly help organizations become more efficient and effective. ? 2.4 2.5 As a business student, you can gain valuable insight into an organization by understanding the types of information systems that exist in and across enterprises. When you understand how to use these systems to improve business processes and decision making, you can vastly improve organizational performance. After reading this chapter, you should have gained an appreciation of the various kinds of information systems employed...

Words: 16302 - Pages: 66

Free Essay

Prediction and Optimisation of Fsw

...EXECUTIVE SUMMARY INTRODUCTION/BACKGROUND The objective of the thesis is to predict and optimize the mechanical properties of Aircraft fuselage aluminium (AA5083). Firstly, data-driven modelling techniques such as Artificial Neural – Fuzzy networks and regressive analysis are used and by making the effective use of experimental data, FIS membership function parameters are trained. At the core, mathematical model that functionally relates tool rotational speed and forward movement per revolution to that of Yield strength, Ultimate strength and Weld quality are obtained. Also, simulations are performed, and the actual values are compared with the predicted values. Finally, multi-objective optimization of mechanical properties fuselage aluminium was undertaken using Genetic Algorithm to improve the performance of the tools industrially. AIMS AND OBJECTIVES Objectives of the dissertation include  Understanding the basic principles of operation of Friction Stir Welding (FSW).  Gaining experience in modelling and regressive analysis.  Gaining expertise in MATLAB programming.  Identifying the best strategy to achieve the yield strength, Ultimate Tensile strength and Weld quality of Friction Stir Welding.  Performing optimization of mechanical properties of FSW using Genetic Algorithm. I  To draw conclusions on prediction of mechanical properties of FSW optimization of aircraft fuselage aluminium. ACHIEVEMENTS  The basic principles of friction welding of the welding...

Words: 9686 - Pages: 39

Premium Essay

Nt1330 Unit 8 Assignment 1

...\subsection{KNN classifier} Cover and Hart \cite{cover1967nearest} introduced the idea of nearest neighbor pattern classification.In pattern recognition field, KNN is one of the most non-parametric classifiers that is used for a supervised learning algorithm \cite{murphy2012machine,kaghyan2012activity}. % ,murthy2015ann,suguna2010improved}. KNN searches the K points in the training set that are closest to the test input x which is judged to the highest class probability \cite{murphy2012machine}. Based on the predefined(classified) class labels which is a set of N labeled instances $\{x_i, y_i\}^1_N$, the classifier task is to predict the label of class that has the unknown(unclassified) query vector $x_0$ \cite{song2007iknn}. Using the K nearest neighbors of $x_0$, the KNN could make a majority vote to decide the class label of $x_0$. In order to classify a new object, KNN don't use any model to fit, but it depends on memory(the attributes and training samples). The criteria of classification are yielded by the training samples themselves without any additional data. KNN compute a prediction value from the neighborhood classes to classify the new query instance. %the decision rule is to assign an unclassified sample %point to the classification of the nearest of a collection of predetermined classified %points. Various ways are existing to compute the distance between two points in multidimensional space. Suppose we have x, y two n-dimensional vectors, such that $x=\{x_1...

Words: 642 - Pages: 3

Free Essay

Haha

...boisestate.edu/update/files/2013/08/Memritor620x320.jpg) Today’s computing chips are incredibly complex and contain billions of nano-scale transistors, allowing for fast, high-performance computers, pocket-sized smartphones that far outpace early desktop computers, and an explosion in handheld tablets. Despite their ability to perform thousands of tasks in the blink of an eye, none of these devices even come close to rivaling the computing capabilities of the human brain. At least not yet. But a Boise State University research team could soon change that. Electrical and computer engineering faculty Elisa Barney Smith, Kris Campbell and Vishal Saxena are joining forces on a project titled “CIF: Small: Realizing Chip-scale Bio-inspired Spiking Neural Networks with Monolithically Integrated Nano-scale Memristors.” (http://news.boisestate.edu/update/files 1 of 3 3/15/2014 12:37 PM Researchers Building a Computer Chip Based on the Human Brain - U... http://news.boisestate.edu/update/2013/08/14/research-team-building-a-... /2013/08/PCB_image.png) Team members are experts in machine learning (artificial intelligence), integrated circuit design and memristor devices. Funded by a three-year, $500,000 National Science Foundation grant, they have taken on the challenge of developing a new kind of computing architecture that works more like a brain than a traditional digital computer. “By mimicking the brain’s billions of interconnections and pattern recognition capabilities, we may ultimately...

Words: 780 - Pages: 4

Premium Essay

Coors Beer Fasctory

...this test take time, to achieve the customer satisfaction Coors have to understand the beer flavor based chemical composition. This may help to satisfy the customer taste and may help to increase the profitability of the firm. The people are ready to accept the new products in the market if it is reasonable and affordable price with the quality. Question 2 What is the objective of the neural network used at Coors? Neural networks was used to create a link between chemical composition and sensory analysis. The neural network was designed to understand the relationship between the input and output. The neural network consists of a MLP architecture with two hidden layers. Data were normalized within the network and enabling comparison between the results for the various sensory outputs. Question 3 Why were the results of Coors' neural network initially poor, and what was done to improve the results? The results were poor because of two factors. The first reason was concentrated on a single products quality meant that the variation in the data was low. This couldn’t help the neural network to extract useful relationships from the data. Second was subsets of provided input...

Words: 574 - Pages: 3

Premium Essay

Nt3110 Unit 3 Problem Analysis Paper

...150. This neural network explanation technique is used to determine the relative importance of individual input attributes. A. sensitivity analysis B. average member technique C. mean squared error analysis D. absolute average technique ANSWER: A 151. Which one of the following is not a major strength of the neural network approach? A. Neural networks work well with datasets comprising noisy data. B. Neural networks can be used for both supervised learning and unsupervised clustering. C. Neural network learning algorithms are guaranteed to converge to an optimal solution. D. None of the above ANSWER: C 152. During back propagation training, the use of the delta rule is to make weight adjustments so as to A. Minimize the number of times...

Words: 490 - Pages: 2

Free Essay

Master

...2D1432 Artificial Neural Networks and Other Learning Systems ! Plasticity vs. Stability Dilemma Plasticity: Network needs to learn new patterns Stability: Network needs to memorize old patterns Human brain: face recognition Adaptive Resonance Theory (ART) ! ! ! Plasticity vs. Stability Dilemma Backpropagation ! ART Characteristics Goal: Design a neural network that preserves its previously learned knowledge while continuing to learn new things. Biologically plausible: ART has a selfregulating control structure that allows autonomous recognition and learning no supervisory control or algorithmic implementation. ! ! ! New patterns require retraining of the network No Stabilization Stabilization achieved by decreasing learning rate Decreasing learning rate reduces plasticity ! ! Kohonen maps (SOM) ! ! other Neural Networks ART Online learning Self-organizing (unsupervised) Maintains permanent plasticity Learn in approximate match phase Non-stationary world Other ANN (BP) Offline learning supervised Plasticity regulated externally Learn in mismatch phase (error based) Stationary world ART Terminology STM : Short term memory ! ! Refers to the dynamics of neural units (recognition, matching) Refers to the adaptation of weights (learning) control structure to activate/deactivate search and matching ! LTM : Long term memory ! ! Gain control : ! 1 ART Basic Architecture F2 gain + ! ART Basic Architecture ...

Words: 1571 - Pages: 7

Free Essay

Nonlinear Modelling Application in Distillation Column

...Chemical Product and Process Modeling Volume 2, Issue 3 2007 Article 12 Nonlinear Modelling Application in Distillation Column Zalizawati Abdullah, Universiti Sains Malaysia Norashid Aziz, Universiti Sains Malaysia Zainal Ahmad, Universiti Sains Malaysia Recommended Citation: Abdullah, Zalizawati; Aziz, Norashid; and Ahmad, Zainal (2007) "Nonlinear Modelling Application in Distillation Column," Chemical Product and Process Modeling: Vol. 2 : Iss. 3, Article 12. Available at: http://www.bepress.com/cppm/vol2/iss3/12 DOI: 10.2202/1934-2659.1082 ©2007 Berkeley Electronic Press. All rights reserved. Nonlinear Modelling Application in Distillation Column Zalizawati Abdullah, Norashid Aziz, and Zainal Ahmad Abstract Distillation columns are widely used in chemical processes and exhibit nonlinear dynamic behavior. In order to gain optimum performance of the distillation column, an effective control strategy is needed. In recent years, model based control strategies such as internal model control (IMC) and model predictive control (MPC) have been revealed as better control systems compared to the conventional method. But one of the major challenges in developing this effective control strategy is to construct a model which is utilized to describe the process under consideration. The purpose of this paper is to provide a review of the models that have been implemented in continuous distillation columns. These models are categorized under three major groups: fundamental...

Words: 9415 - Pages: 38

Free Essay

Neural Network

...EEL5840: Machine Intelligence Introduction to feedforward neural networks Introduction to feedforward neural networks 1. Problem statement and historical context A. Learning framework Figure 1 below illustrates the basic framework that we will see in artificial neural network learning. We assume that we want to learn a classification task G with n inputs and m outputs, where, y = G(x) , (1) x = x1 x2 … xn T and y = y 1 y 2 … y m T . (2) In order to do this modeling, let us assume a model Γ with trainable parameter vector w , such that, z = Γ ( x, w ) (3) where, z = z1 z2 … zm T . (4) Now, we want to minimize the error between the desired outputs y and the model outputs z for all possible inputs x . That is, we want to find the parameter vector w∗ so that, E ( w∗ ) ≤ E ( w ) , ∀w , (5) where E ( w ) denotes the error between G and Γ for model parameter vector w . Ideally, E ( w ) is given by, E(w) = ∫ y – z 2 p ( x ) dx (6) x where p ( x ) denotes the probability density function over the input space x . Note that E ( w ) in equation (6) is dependent on w through z [see equation (3)]. Now, in general, we cannot compute equation (6) directly; therefore, we typically compute E ( w ) for a training data set of input/output data, { ( x i, y i ) } , i ∈ { 1, 2, …, p } , (7) where x i is the n -dimensional input vector, x i = x i 1 x i 2 … x in T (8) x2 y2 … … Unknown mapping G xn ym z1 z2 Trainable model Γ … zm -1- model outputs y1 … inputs x1...

Words: 7306 - Pages: 30