Premium Essay

Gopal Iron

In: Business and Management

Submitted By mohak19
Words 3366
Pages 14
Gopal Iron & Steels co. (Gujarat) Ltd. -A Managerial View

A Report by:- Mohak Bhandari, Sambhav Jain, Harsh Patel, Bharat Gabra

Table of Content SR.NO | Particulars | Page. no | 1 | Company Overview | 3 | 2 | Industry Overview | 4 | 3 | Company Details | 6 | 4 | Shareholding Pattern | 7 | 5 | Financial History | 8 | 6 | Management Practices | 9 | 7 | Operation Management | 10 | 8 | Process | 11 | 9 | Management | 12 | 10 | Labor Response | 13 | 11 | Globalization Responses | 14 | 12 | Change and Innovation | 15 | 13 | Leadership | 16 | 14 | PESTLE Analysis | 17 | 15 | Conclusion | 18 |

Company overview

Gopal Iron & Steels Co. (Gujarat) Limited (GISCO) is established in the year 1994. We are a leading manufacturer of Structural Steels, Bars and ERW Tube / Pipes in the state of Gujarat. Over the years, GISCO has been continuously upgrading with latest technology and infrastructure. GISCO has earned the status of preferred steel manufacturer for traders, customers, engineering, construction, infrastructure and other primary industry. Since its inception, as Gopal Rolling Mills Private Limited, the company has never looked back. Every year has brought enormous rewards not only in the form of revenues and records, but also in the form of continuously growing customer base. The company was converted into a Public Limited Company in the year 1995 and since then it is known as Gopal Iron & Steels Co. (Gujarat) Limited (GISCO).

The company continuously pursues new grounds in the area of steel manufacturing and at present engaged in manufacture of Sections like Beams, Channels, Angles and Bars like Flats, Round, Square etc. Recently company has installed fully automatic with State-of-art technology Tube Mill for manufacturing of ERW MS, SS and Galvanized Round, Square and Rectangular Hollow Tubes under the

Similar Documents

Free Essay

Mineral Based Industry

...Iron and steel, cement, aluminium, machine tools, petrochemicals producing industries are called mineral based industries. Mining is the extraction of valuable minerals or other geological materials from the earth, from an orebody, lode, vein, (coal) seam or reef, which forms the mineralized horizon and package of economic interest to the miner. To gain access to the mineralised package within the lease area (aka Mining Rights Lease) it is often necessary to mine through (to create access, shafts, addits, ramps) or remove to the side waste material which is not of immediate interest to the miner. The total movement of ore and waste, which also includes the removal of soil in some cases, is referred to as the mining process. Depending on the nature, attitude, and grade of the orebody, it is often the case that more waste than ore is mined during the course of the life of a mine. The waste removal and placement is a major cost to the mining operator and to facilitate detailed planning the detailed geological and mineralisation characterization of the waste material forms an essential part of the geological exploration programme. The science of extractive metallurgy is a specialized area in the science of metallurgy that studies the extraction of valuable metals from their ores, especially through chemical or mechanical means. Mineral processing (or mineral dressing) is a specialized area in the science of metallurgy that studies the mechanical means of crushing, grinding, and washing...

Words: 1056 - Pages: 5

Premium Essay

History

...Visakhapatnam Steel Plant, popularly known as Vizag Steel (Telugu: విశాఖ ఉక్కు కర్మాగారం), is the most advanced steel producer in India with the help of German and soviet technology.its products have been rated the best in the world market.80% of its income comes from the exports of steel products to japan,Germany,united states, Singapore, Dubai,Australia,south american countries and many more.the company has grown from a loss making industry to 3 billion dollar turnover company registering a growth of 203.6% in just 4 years. Vizag Steel Plant has been conferred Navratna status on 17 November 2010.[1] Founded in 1971, the company focuses on producing value-added steel, with 214,000 tonnes produced in August 2010, out of 252,000 tonnes total of salable steel produced.[2] A new company Rashtriya Ispat Nigam Limited (RINL) was formed on 18 February 1982. Visakhapatnam Steel Plant was separated from SAIL and RINL was made the corporate entity of Visakhapatnam Steel Plant in April 1982.[citation needed] Vizag Steel Plant is the only Indian shore-based steel plant and is situated on 19,000 acres (7,700 ha), and is poised to expand to produce up to 20 MT in a single campus. Turnover in 2011-2012 was Rs 14,457 Crores.[citation needed] On 20 May 2009 Honorable Prime Minister Manmohan Singh launched the expansion project of Visakhapatnam Steel Plant from a capacity of 3.6MT to 6.3MT at a cost of Rs. 8,692 Crores Infrastructure * Coke Ovens and Coal Chemical Plant * Sinter Plant ...

Words: 543 - Pages: 3

Free Essay

Myron

...I. Title: The Mole II. Purpose: To determine the number of atoms on a piece of galvanized iron and approximate the thickness in atoms of the coating III. Equipment: Reagents: 10 mL graduated cylinder 6 M HCl 150 mL beaker galvanized iron Balance Crucible tongs IV. Procedure: 1. Obtain a square or rectangular piece of galvanized iron which is 2 or 3 cm on an edge. Measure its length, width, and mass as precisely as your instruments permit. Record data. 2. Place the metal in a 150 ml beaker and add about 10 mL of 6 M hydrochloric acid. When the reaction has reached the stage where only a few bubbles of gas has been removed. Rinse the metal with water and dry it well. 3. Weigh and record the mass of the iron core V. Data: VI. Calculations 1. What: The mass of zinc coating How: Subtraction Calc: 1.6815-1.6071=0.0744 g 2. What: Moles of iron How: Factor labeling Calc: 55.85 g Fe/1 x 1/1 =55.85 g Fe 3. What: Moles of zinc in coating How: factor labeling Calc: 0.0744g /1 x 1/1 4. What: Mole ratio of zinc to iron How: Moles and zinc/moles of iron Calc: 65.39/55.85= 1.170 5. What: Atoms of zinc on 2 sides How: Factor Labeling Calc: 65.39 g/1 x 6.022 10x23/1 6. What: Atoms of iron How: Factor Labeling Calc: 55.85 g/1 x 6.022 10x23/1 7. What: Ratio of zinc to iron atoms How: Ratio Calc: 5.585 10x25/ 6.539 10x25 =.8541 8. What: Mass of zinc on one side How: division Calc:...

Words: 350 - Pages: 2

Free Essay

Bajaj Electricals Ltd.

...THE COMPANY AT A GLANCE       An introduction: Bajaj electrical Ltd., incorporated in the year 1938, is a mid cap company (having a market cap of Rs 2531.98 cr.) operating in consumer durable sector. The company expertise in lighting, consumer durables, engineering and projects, is promoted by Kamalnayan Bajaj & have its headquarter in Mumbai, Maharashtra. History: The Company was incorporated as Radio Lamp Works Limited under the Indian Companies Act, 1913 as a public company limited by shares, pursuant to a certificate of incorporation dated July 14, 1938. Subsequently the name of the Company was changed to Bajaj Electricals Limited, pursuant to a fresh certificate of incorporation dated October 1, 1960. Company’s manufacturing unit have been accredited with ISO 9001 / 9002 and ISO 14001 certifications for its quality management. Some notable projects of the company include lighting works at the Commonwealth Games stadium and the Bandra Worli Sea Link. The Company caters mainly to the needs of the Indian markets and the export turnover being 0.67% (Previous Year 0.81%) of the total turnover of the Company. There are no reportable geographical segments. All assets are located in India. Management: The company management includes:        Shekhar Bajaj Harsh Vardhan Goenka Ashok Jalan V. B. Haribhakti Madhur Bajaj Chairman And Managing Director Director Director Director Director Plant: the company has manufacturing...

Words: 2593 - Pages: 11

Free Essay

Corrosion

...proportion to your fear of suffering. --Thomas Merton The net reaction for this first simple step is therefore: 2(Fe O2 + 2 H2O + 4 e2 Fe + O2 + 2 H2O Fe2+ + 2 e-) 4 OH2 Fe(OH)2 Iron(II) hydroxide is insoluble but its green color is almost never observed because it is ordinarily further oxidized by the oxygen: 2 Fe(OH)2 + ½ O2 + H2O → 2 Fe(OH)3 The final product (when dry) has the reddish-brown flaky character we associate with rust. Although the reaction that produces Fe(OH)2 is technically an equilibrium process (all electrochemical processes are) the value of Kc is very large (>1099 at 298 K) and left unchecked it will go to completion. But the rate is relatively slow under normal atmospheric conditions and so it is still possible to manipulate the equilibrium somewhat by changing appropriate factors. The rates of corrosion reactions--and presumably their mechanisms--vary widely. Factors which influence the progress of the net reaction in the first step of the oxidation of iron may have an effect on the overall rate. The nature of the oxide product is also very important in affecting the extent of the corrosion. For example, aluminum is a very active metal, but its oxide, Al2O3, is very dense and forms a thin protective layer on the metal which discourages further corrosion. In contrast, iron rust (hydrated forms of Fe2O3 such as reddish-brown Fe(OH)3) is typically flaky and easily crumbles off to continually expose fresh metal for reaction. Although the mechanism for corrosion...

Words: 1783 - Pages: 8

Free Essay

The Haemolytic Activity of an Iron Carbohydrate Complex

...J. clin. Path. (1963), 16, 12 The haemolytic activity of an iron carbohydrate complex J. FIELDING with the technical assistance of GILLIAN M. SMITH From Paddington General Hospital, London The haemolytic activity of iron-dextran complex is found to be a function of time, temperature, pH, and concentration. The lytic action is enhanced by small amounts of added ferrous sulphate. The lytic action is inhibited by chelating agents such as citrate and sequestrene salts, which bind ionic iron, but not by ferric citrate or ferric sequestrene which do not bind iron. The ionised iron content of iron-dextran is deduced. SYNOPSIS The lytic activity of iron-dextran is also inhibited by iron-dextrin and by an iron-sorbitol-citric acid preparation. It is suggested that the iron-sorbitol-citrate molecular complex contains free chelating groups for iron. The significance of these findings for iron-carbohydrate toxicity and metabolism is briefly discussed. The clinical toxicity of parenteral iron preparations, both intravenous and intramuscular, has been one of the principal problems associated with their use. The toxic manifcstations are varied in kind and tend to form a pattern of reactions characteristic in type for each iron complex. It is unlikely that a single factor is responsible for all or even most of the observed toxic reactions. Instability of the complex in plasma with possible precipitation in vivo is a likely cause in the case of the saccharated...

Words: 3885 - Pages: 16

Free Essay

Filipino Arch

...The houses vary in the same style depending on their location and social status and taste of the family. Houses of the Filipinos are usually made of wood and nipa. Later galvanized iron replaced nipa for roofing. In some towns, barrios, and cities, houses made of nipa and bamboo are still to be found. Some have sawali walls and cogon roofings. Most of the houses especially the older ones are situated high above the ground for better ventilation and reduced humidity. In the past, building a houses was fast and inexpensive. Houses were built then through the help of friends and neighbors. Today there are only few bamboo houses. Most houses are already built of strong materials like hollow blocks, wood, galvanized iron and glass windows. Modernity has not entirely changed the architecture of the Filipino houses. The batalan is stall a part of the houses in Luzon and is used as an open bathroom, a place for water jars or tapayan and a place for washing. The modern batalan is made of concrete and is still adjacent to the kitchen. The banguerahan, a storage shelf and drainer before the dish rack was introduced, is still a part of a few modern houses. The modern banguerahan is no longer enclosed with bamboo spikes but is screened. The old house of before were not painted. The present ones are painted in varied colors and built styles. The old houses were built high on the ground and the space below calle4d silong was fenced with bamboo to keep pigs, dogs, and chickens...

Words: 600 - Pages: 3

Free Essay

Gggtdeh

...casting becomes smaller than the pattern and the mould cavity. Therefore, to compensate for this, mould and the pattern should be made larger than the casting by the amount of shrinkage. The amount of compensation for shrinkage is called the shrinkage allowance. Generally shrinkage of casting varies not only with material but also with shape, thickness, casting temperature, mould temperature, and mould strength. Therefore, it is better to determine the amount of shrinkage according to the past record obtained from many experiences. Table 1.2 shows an average amount of shrinkage for important cast metals. Table 1.2 Typical shrinkage allowances for important casting metals Type of metal Amount of shrinkage (%) Grey cast irons 0.55-1.00 White cast irons 2.10 Malleable cast irons 1.00 Steels 2.00 Manganese steel 2.60 Magnesium 1.80 Type of metal Zinc Brasses Bronzes Aluminium Aluminium alloys Tin Amount of shrinkage (%) 2.60 1.30-1.55 1.05-2.10 1.65 1.30-1.60 2.00 In practice, pattern makers use a special rule or scale, called the “pattern maker’s contraction rule”, which, after providing with necessary allowance, is slightly longer than the ordinary rule of the same length. The graduations are oversized by a proportionate amount, for example, when constructing a pattern for aluminium alloys, the pattern maker uses a contraction rule measuring...

Words: 977 - Pages: 4

Free Essay

Iron Solutions: Developing New Algal Growth Media for Increased Iron Uptake

...Iron Solutions: Developing New Algal Growth Media for Increased Iron Uptake Andrew Sweeney U.S. Department of Energy Office of Science, Science Undergraduate Laboratory Internship (SULI) University of California San Diego Lawrence Berkeley National Laboratory Berkeley, California August 6, 2015 Prepared in partial fulfillment of the requirements of the U.S. Department of Energy Office of Science, Science Undergraduate Laboratory Internship (SULI) under the direction of Dr. Nigel Quinn in the Earth Sciences Division at Lawrence Berkeley National Laboratory. ABSTRACT This study endeavored to improve sustained productivity of mass cultivated marine microalgae by using limitation of iron, a vital micronutrient, to create a growth medium that would prevent the growth of non-predatory invasive organisms. Iron’s aqueous chemistry is quite complex, and much of this study is focused on the chemical transformations of iron chelates and iron salts in the growth medium my group developed for Nannochloropsis oculata.. This algae has been identified ,because of its high proportion of unsaturated lipids, as a promising candidate for biofuels, specialty chemicals, and protein rich animal feed. Nannochloropsis oculata. also promises to be resource efficient as the cell’s small size ,and minimal agitation requirement, minimizes the loss of inorganic carbon through escaping CO2. The cells were grown in four different media (iron free, 30uM FeEDTA, 10um ferrous sulfate,...

Words: 4669 - Pages: 19

Free Essay

Chem Lab

...phenolphthalein were combined. A piece of paper was soaked in this mixture. 2 nails (one straight, one bent) were wrapped in the damp paper allowing space in between, then left for 10mins. After which, colors formed in the paper napkins were observed. The second part was the bimetallic corrosion. 2 iron nails were cleaned using sand paper. In one nail, copper wire was coiled around its tip. On the other, a zinc granule was attached to its tip. Another paper was soaked in the same mixture in which the nails were wrapped separately and were left for 10mins. The papers were opened and sites where pink and blue colors formed were examined. The results didn’t absolutely correspond to the objectives of this experiment due to the errors on the materials used; however, it was inferred that during the process of corrosion, the metal ions dissolve and the electrons transfer to another location where they’re taken up by oxygen. A mixture of hydrous iron oxides is then produced from the resulting hydroxide ions which react with iron (II). This mixture is what’s commonly known as rust. In the zinc granule – iron nail combination, it was found out that the zinc was oxidized faster compared with iron...

Words: 2109 - Pages: 9

Premium Essay

How Can Nickel Titanium Be Used In Dentistry?

...Stents with Nickel Titanium are non-Ferrous. This is because titanium and nickel and titanium have no iron 1310 °C. This is a metal alloy as it is made up of Nickel and Titanium. This metal is shown as a shiny, bright, silver metal. The metal can elasticise and can re shape itself to its original shape. Nickel titanium has many uses as it is used in most medical areas.NiTi is used in dentistry when braces are put on a person’s teeth because its flexibility allows it to straighten teeth. Urea Formaldehyde is a polymer as it is a thermosetting plastic 132°C Urea formaldehyde is a polymer made up from a methanal Urea formaldehyde has a high heat resistance which allows plugs to stay in the socket which lets it function longer. Also it...

Words: 303 - Pages: 2

Premium Essay

Roman Blacksmithing Research Paper

...been made from iron or wrought iron. Now we go on to a more delicate tool also known as the chisel. They would use chisels to make patterns and carve shapes and rune into the sword. The next tool is a poker, the poker is what a blacksmith from Ancient Rome would use to rearrange the charcoal in different areas around the forge to get the right heat. This was useful so the blacksmith didn’t take the risk of actually putting it in with his hands. Now I will tell you about the crucible, the crucible was a tool that blacksmiths would use to melt metal into a liquid. The crucible would go inside the forge the blacksmith was using. This tool would be useful because the romans...

Words: 1314 - Pages: 6

Free Essay

Dove Soap

...ANALYSIS OF COMMODITY MARKET (GOLD & SILVER) Submitted in partial fulfilment of the requirements for Post Graduate Diploma in Management (PGDM) By SNEHA GUPTA ERA BUISSNESS SCHOOL Dwarka sector-9 July 2013 Acknowledgement I owe many thanks to all those people who helped and supported me during the process & completion of this project. I would thank my Institution for giving me an opportunity to undertake this project. My deepest thank to Mr. Vinay Pratap Singh (Sr. Manager online), Mr. B.Sanjeev Kumar my industry mentor, for guiding me throughout the project completion process with attention and care. He displayed all the patience required to go through the project and make necessary correction as and when needed. My Summer Training at “SMC Global Securities Ltd.” is an ardent, unforgettable and fruitful experience. I’m overwhelmed with the friendly & co-operative attitude, and the enlightened advice and information extended to me by everyone. I thank Prof. Hemant Indurkar – my faculty mentor for supporting and monitoring my work since the beginning of the project. I am grateful to all the fellow employees of “SMC Global Securities Ltd” for their help, support and amiability throughout the internship. Finally, yet importantly, I would like to express my heartfelt thanks to my beloved parents for their blessings, my friends for their help and wishes for the successful completion of this project. Mukesh Kumar Mishra ...

Words: 649 - Pages: 3

Premium Essay

Tev Study

...Part-A: - Executive Summary: 1. Project background & promoters 1.1 PROJECT AT GLANCE 6 MVA * 1 Sub merged Arc Furnace for Manufacture of Ferro Manganese, Silico Manganese SHARANYA NATURAL RESOURCES & INFRA PROJECTS PRIVATE LIMITED H NO 1-2-110 Shanthi Nagar, Adilabad Andhra Pradesh 1. Sri Sanjay Kumar Makhariya 2. Sri P Shankar 3. Smt P Uma Adilabad, Andhra Pradesh Ferro Alloys - Silico Manganese (SiMn.) / Ferro Manganese (FeMn.) Used in Steel Industry 6*1 MVA Furnace Sub merged Arc Furnace for Ferro Manganese, Silico Manganese (4800 TPA SiMn and 7000 TPA FeMn based on equal utilization for both the products) Rs. 1792.33 Lakhs (Say 1792 lakhs) 60% 85% 90% Rs.868.00 lakhs Existing Proposed Term Loan – NIL Rs. 925.00 Lacs CC Limit – NIL Rs. 403.00 Lacs LC/FLC -NIL Rs. 50.00 Lacs One (1) Year Moratorium from Commercial production + 6 Years – Total Seven (7) years from Commercial production Name of the Company Registered Office Names of the Board of Directors Plant location Product Application Installed capacity Project Cost Capacity utilization of Year 2013-14 Year 2014-15 Year 2015-16 & onwards Promoter’s Contribution Banking limit - Term loan - Cash credit - LC/FLC Repayment Period Debt-Equity Ratio Project total (overall) TERM Loan (only) 1.53 : 1 1.07 : 1 3.49 times 5.05 times 40.51% Average DSCR - Gross - Net IRR SHARANYA NATURAL RESOURCES & INFRA PROJECTS PRIVATE LIMITED H NO 1-2-110 Shanthi Nagar, Adilabad Andhra Pradesh Page 1 of 76 1.2. ABOUT...

Words: 26448 - Pages: 106

Free Essay

Role of Defects in Vo2

...Vanadium Dioxide | MSE 510 Term Paper | Shamus E. O'Keefe Dec. 5, 2012 | Vanadium oxides are interesting materials owing to their unique physical and chemical properties. Vanadium dioxide (VO2) may be the most interesting, and as a result possibly the most studied of the class. VO2 is a strongly correlated electron system that exhibits a dramatic metal-insulator transition (MIT) near room temperature. In addition to the MIT, VO2 has also been shown to possess high temperature superconductivity and colossal magnetoresistance[2]. Thin films made of VO2 have been made into novel electronic devices including waveguides, thermochromic windows, ultra-fast optical switches, photonic crystals, and bolometers. The large diversity of physical and chemical properties that they can thus possess make them technologically important and a rich ground for basic research. We will review this and other properties of VO2 and discuss how the bonding and crystallographic symmetry give rise to these properties. Let us begin with the basics… In bulk form, vanadium oxides display different oxidation states and V–O coordination spheres. In VO2, we have V+4 and O-2 with coordination numbers of 6 and 3, respectively. Using Pauling electronegativities (V=1.6, O=3.5) we see that ΔE > 1.7, indicating ionic bonding. Indeed, this is the case in the monoclinic phase. However, since there is a difference in electronegativity, we know that the bond has polar character...

Words: 1934 - Pages: 8