Premium Essay

In: Other Topics

Submitted By baybidoll94

Words 1027

Pages 5

Words 1027

Pages 5

Olivia Kichline

Northampton Community College

Education For All Students 115 Section 02

Professor Buenaflor

10/25/12

Rationale

What I would like to learn from this assignment is to be able to analyze someone and give a correct response about them, whether it may be a positive or negative response. While writing this paper, I think it is a good idea to learn to give honest opinions about the subject and also provide a good amount of detailing to help describe whether this teacher did or did not have a good impression on me. It is very important to say whether I was able to learn how to be a better teacher and what the teacher did that I could possibly use in the future. While analyzing and going through the process of this assignment it is helping realize how to become a better teacher as well. I would also like to get more comfortable and experience on using this template of the paper.

Memories Of A Teacher My teacher, Mr. G, used many different instructional techniques and approaches to his lessons. Mr. G had taught me math for three years in a row, so I think that I have a good grasp on his approaches to the lessons that he would teach. He would assign many homework assignments, as well as in-class assignments, which helped me and other students understand and get practice with the lesson that we were learning. I think that with math having a lot of homework is a good thing. In my mind, the only way to learn how to do math is plenty of practice. The more you practice, the easier it will be. Mr. G would also have the students do some math problems on the chalk board or smart board to show the class and go over the corrections with the whole class so that everyone would understand the problem. Playing “racing” games also helped and added fun to the class. With the “racing” games, the students would get into groups and have to take...

Premium Essay

...solutions. If you have a graphing calculator, this method is the quickest. If you don't have a calculator, it can be difficult to graph the equation. Completing the square: This is probably the most difficult method. I find it hardest to remember how to apply this method. Since the quadratic formula was derived from this method, I don't think there is a good reason to use completing the square when you have the formula Factoring: this is probably the easiest method for solving an equation with integer solutions. If you can see how to split up the original equation into its factor pair, this is the quickest and allows you to solve the problem in one step. Week 9 capstone part 1 Has the content in this course allowed you to think of math as a useful tool? If so, how? What concepts...

Words: 662 - Pages: 3

Premium Essay

...This article is about the study of topics, such as quantity and structure. For other uses, see Mathematics (disambiguation). "Math" redirects here. For other uses, see Math (disambiguation). Euclid (holding calipers), Greek mathematician, 3rd century BC, as imagined by Raphael in this detail from The School of Athens.[1] Mathematics is the study of topics such as quantity (numbers),[2] structure,[3] space,[2] and change.[4][5][6] There is a range of views among mathematicians and philosophers as to the exact scope and definition of mathematics.[7][8] Mathematicians seek out patterns[9][10] and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof. When mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, and the systematic study of the shapes and motions of physical objects. Practical mathematics has been a human activity for as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry. Rigorous arguments first appeared in Greek mathematics, most notably in Euclid's Elements. Since the pioneering work of Giuseppe Peano (1858–1932), David Hilbert (1862–1943), and others on axiomatic systems in the late 19th century, it has become......

Words: 634 - Pages: 3

Free Essay

...STAT2011 Statistical Models sydney.edu.au/science/maths/stat2011 Semester 1, 2014 Computer Exercise Weeks 1 Due by the end of your week 2 session Last compiled: March 11, 2014 Username: mac 1. Below appears the code to generate a single sample of size 4000 from the population {1, 2, 3, 4, 5, 6}. form it into a 1000-by-4 matrix and then ﬁnd the minimum of each row: > rolls1 table(rolls1) rolls1 1 2 3 4 5 6 703 625 679 662 672 659 2. Next we form this 4000-long vector into a 1000-by-4 matrix: > four.rolls=matrix(rolls1,ncol=4,nrow=1000) 3. Next we ﬁnd the minimum of each row: > min.roll=apply(four.rolls,1,min) 4. Finally we count how many times the minimum of the 4 rolls was a 1: > sum(min.roll==1) [1] 549 5. (a) First simulate 48,000 rolls: > rolls2=sample(x=c(1,2,3,4,5,6),size=48000,replace=TRUE) > table(rolls2) rolls2 1 2 3 4 5 6 8166 8027 8068 7868 7912 7959 (b) Next we form this into a 2-column matrix (thus with 24,000 rows): > two.rolls=matrix(rolls2,nrow=24000,ncol=2) (c) Here we compute the sum of each (2-roll) row: > sum.rolls=apply(two.rolls,1,sum) > table(sum.rolls) sum.rolls 2 3 4 5 6 7 8 9 10 11 742 1339 2006 2570 3409 4013 3423 2651 1913 1291 1 12 643 Note table() gives us the frequency table for the 24,000 row sums. (d) Next we form the vector of sums into a 24-row matrix (thus with 1,000 columns): > twodozen=matrix(sum.rolls,nrow=24,ncol=1000,byrow=TRUE) (e) To ﬁnd the 1,000 column minima use > min.pair=apply(twodozen,2,min) (f) Finally compute......

Words: 597 - Pages: 3

Free Essay

...and solve problems in everyday life”. In my everyday life I have to keep the balance in my check book, pay bills, take care of kids, run my house, cook, clean etc. With cooking I am using math, measuring how much food to make for four people (I still haven’t mastered that one). With bills I am using math, how much each company gets, to how much money I have to spare (which these days is not much). In my everyday life I do use some form of a math. It might not be how I was taught, but I have learned to adapt to my surroundings and do math how I know it be used, the basic ways, none of that fancy stuff. For my weakest ability I would say I fall into “Confidence with Mathematics”. Math has never been one of my favorite subjects to learn. It is like my brain knows I have to learn it, but it puts up a wall and doesn’t allow the information to stay in there. The handout “The Case for Quantitative Literacy” states I should be at ease with applying quantitative methods, and comfortable with quantitative ideas. To be honest this class scares the crap out of me, and I am worried I won’t do well in this class. The handout also says confidence is the opposite of “Math Anxiety”, well I can assure you I have plenty of anxiety right now with this class. I have never been a confident person with math, I guess I doubt my abilities, because once I get over my fears and anxiety I do fine. I just have to mentally get myself there and usually it’s towards the end of the class. There are......

Words: 418 - Pages: 2

Premium Essay

...Jasmine Petersen Dr. Abdeljabbar MAT 1111 April 23, 2014 Algebra is one of the most important subjects someone can learn. It is a subject that transfers into daily life. A lot of people do not realize that they are using algebra. Algebra can be anything from calculating the amount of money you’ve spent on your grocery shopping, designing structural plans for a building, and keeping track of the calories you have in your diet. Our professor told us that in every subject, we use math. My major is chemistry and mathematics is used widely in chemistry as well as all other sciences. Mathematical calculations are absolutely necessary to explore important concepts in chemistry. You’ll need to convert things from one unit to another. For example, you need to convert 12 inches to feet. Also, we use simple arithmetic to balance equations. A lot of things I’ve had learned from this course and one of them was that we use Math for everyday life. I’ve also learned many ways how to solve equations such as linear, quadratic, exponential, and logarithmic equations. All the material that we did learn was all easy to learn and understand. I believe that the instructor did a good job explaining on how to solve problems. If my friend was asking me how to determine the differences between the equation of the ellipse and the equation of the hyperbola, I would first give he or she the definition of the two words ellipse and hyperbola. An ellipse is a set of all points in a plane such that the......

Words: 623 - Pages: 3

Free Essay

...A | Course Title & Number | Calculus II: MTH104 | B | Pre/Co-requisite(s) | Pre-requisite: MTH103 (Calculus I) | C | Number of credits | 3 | D | Faculty Name | Dr. Ghada Alobaidi | E | Term/ Year | Fall 2014 | F | Sections | Course | Days | Time | Location | MTH104.02 MTH104.04MTH104.06 | UTR UTRMW | 9:00-9:50 10:00-10:50 8:00-9:15 | PHY 113NAB 007NAB010 | | | | | | G | Instructor Information | Instructor | Office | Telephone | Email | Ghada Alobaidi | NAB 249 | 06 515 2754 | galobaidi@aus.edu | Office Hours: UT: 11:00 – 12:30 , R: 11:00 – 12:00 or by appointment. | H | Course Description from Catalog | Covers techniques of integration, improper integrals, sequences, infinite series, power series, parameterized curves, polar coordinates, integration in polar coordinates and complex numbers. | I | Course Learning Outcomes | Upon completion of the course, students will be able to: * Read, analyze, and apply to problems, written material related to the study of calculus. * Use the appropriate technique(s) – including integration by parts, trigonometric substitutions, partial fractions, etc. to integrate algebraic, logarithmic, exponential, trigonometric, and composite functions. * Evaluate improper integrals and test them for convergence. * Compute arc length and surface area of revolution of graphs and parametric curves. * Graph polar curves and find enclosed area and arc length. * Apply theorems about limits......

Words: 1366 - Pages: 6

Premium Essay

...Math is used everyday – adding the cost of the groceries before checkout, totaling up the monthly bills, estimating the distance and time a car ride is to a place a person has not been. The problems worked this week have showed how math works in the real world. This paper will show how two math problems from chapter five real world applications numbers 35 and 37 worked out. Number 35 A person hired a firm to build a CB radio tower. The firm charges $100 for labor for the first 10 feet. After that, the cost of labor for each succeeding 10 feet is $25 more than the preceding 10 feet. That is, the nest 10 feet will cost $125; the next 10 feet will cost $150, etc. How much will it cost to build a 90-foot tower? Solving this problem involves the arithmetic sequence. The arithmetic sequence is a sequence of numbers in which each succeeding term differs from the preceding term by the same amount (Bluman, 2011). n = number of terms altogether n = 9 d = the common differences d = 25 ª1 = first term ª1 = 100 ªn = last term ª2 = ª9 The formula used to solve this problem came from the book page 222. ªn = ª1 + (n -1)d ª9 = 100 + (9-1)25 ª9 = 100 + (8)25 ...

Words: 540 - Pages: 3

Premium Essay

...find the national average cost of food for an individual, as well as for a family of 4 for a given month. http://www.cnpp.usda.gov/sites/default/files/usda_food_plans_cost_of_food/CostofFoodJan2012.pdf 5. Find a website for your local city government. http://www.usa.gov/Agencies/Local.shtml 6. Find the website for your favorite sports team (state what that team is as well by the link). http://blackhawks.nhl.com/ (Chicago Blackhawks) 7. Many of us do not realize how often we use math in our daily lives. Many of us believe that math is learned in classes, and often forgotten, as we do not practice it in the real world. Truth is, we actually use math every day, all of the time. Math is used everywhere, in each of our lives. Math does not always need to be thought of as rocket science. Math is such a large part of our lives, we do not even notice we are computing problems in our lives! For example, if one were interested in baking, one must understand that math is involved. One may ask, “How is math involved with cooking?” Fractions are needed to bake an item. A real world problem for baking could be as such: Heena is baking a cake that requires two and one-half cups of flour. Heena poured four and one-sixth cups of flour into a bowl. How much flour should Heena take out of the bowl? In this scenario of a real world problem, we have fractions, and subtraction of fractions, since Heena has added four and one-sixth cups of flour, rather than the needed...

Words: 665 - Pages: 3

Free Essay

...Sample Exam 2 - MATH 321 Problem 1. Change the order of integration and evaluate. (a) (b) 2 0 1 0 1 (x y/2 + y)2 dxdy. + y 3 x) dxdy. 1 0 0 x 0 y 1 (x2 y 1/2 Problem 2. (a) Sketch the region for the integral f (x, y, z) dzdydx. (b) Write the integral with the integration order dxdydz. THE FUNCTION f IS NOT GIVEN, SO THAT NO EVALUATION IS REQUIRED. Problem 3. Evaluate e−x −y dxdy, where B consists of points B (x, y) satisfying x2 + y 2 ≤ 1 and y ≤ 0. − Problem 4. (a) Compute the integral of f along the path → if c − f (x, y, z) = x + y + yz and →(t) = (sin t, cos t, t), 0 ≤ t ≤ 2π. c → − → − → − (b) Find the work done by the force F (x, y) = (x2 − y 2 ) i + 2xy j in moving a particle counterclockwise around the square with corners (0, 0), (a, 0), (a, a), (0, a), a > 0. Problem 5. (a) Compute the integral of z 2 over the surface of the unit sphere. → → − − → − → − − F · d S , where F (x, y, z) = (x, y, −y) and S is → (b) Calculate S the cylindrical surface deﬁned by x2 + y 2 = 1, 0 ≤ z ≤ 1, with normal pointing out of the cylinder. → − Problem 6. Let S be an oriented surface and C a closed curve → − bounding S . Verify the equality → − → − → → − − ( × F ) · dS = F ·ds − → → − if F is a gradient ﬁeld. S C 2 2 1...

Words: 254 - Pages: 2

Free Essay

...Cbse –Spot.blogspot.com CLASS- IX MATHEMATICS (SA – II) TIME – 3 HOURS MAX. MARKS – 90 General instructions:- * All question are compulsory. * The question paper consists of 34 questions divided into four sections A, B, C and D. Section – A comprises of 8 question of 1mark each. Section – B comprises of 6 questions of 2 marks each. Section – C comprises of 10 questions of 3 marks each and Section – D comprises of 10 questions of 4 marks each. * Question numbers 1 to 8 in Section – A are multiple choice questions where you are to select one correct option out of the given four. * There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one lf the alternatives in all such questions. * Use of calculator is not permitted. * An additional 15 minutes time has been allotted to read this question paper only. SECTION – A 1. Any point on the line x + y = 0 is of form a. b. c. d. (,−) 2. The coefficient of y in the equation 3(2x – y) + x + 2y = 5 is b. 7 b. – 5 c. – 1 d. 1 3. If in a sphere, volume and surface area are numerically equal, then radius will be: c. 1 b. 3 c. 2 d. 4 4. The length of longest pole that can be put in a room of dimensions (10m x 10m x 5m) is d. 15m b. 16m c. 10m d. 12m 5. If in a......

Words: 725 - Pages: 3

Premium Essay

...Diana Garza 1-16-12 Reflection The ideas Stein presents on problem saving and just math in general are that everyone has a different way of saving their own math problems. For explains when you’re doing a math problem you submit all kinds of different numbers into a data or formula till something works or maybe it’s impossible to come up with a solution. For math in general he talks about how math is so big and its due in large measure to the wide variety of situations how it can sit for a long time without being unexamined. Waiting for someone comes along to find a totally unexpected use for it. Just like has work he couldn’t figure it out and someone else found a use for it and now everyone uses it for their banking account. For myself this made me think about how math isn’t always going to have a solution. To any math problem I come across have to come with a clear mind and ready to understand it carefully. If I don’t understand or having hard time taking a small break will help a lot. The guidelines for problem solving will help me a lot to take it step by step instead of trying to do it all at once. Just like the introduction said the impossible takes forever. The things that surprised me are that I didn’t realize how much math can be used in music and how someone who was trying to find something else came to the discovery that he find toe. What may people were trying to find before...

Words: 270 - Pages: 2

Premium Essay

...IPPR #: EDUC 530 Lesson Plan: Place Value, Integer, Computation |Teacher Candidate: |Course: EDUC 530 | |LESSON PREPARATION [before the lesson] | |Topic: Place Value, Integer, Computation |Concept: Regrouping during multiplication of two-digit numbers without | | |decimals | |Subject: Mathematics |Grade: Fourth Grade, Whole Class | |State Standard [Virginia SOL]: | |VA-SOL 4.4 b > The student will... | |b) add, subtract, and multiply whole numbers; | |d) solve single-step and multistage addition, subtraction, and multiplication problems with whole numbers. ...

Words: 1010 - Pages: 5

Free Essay

...Compilation of Different Math Verbal Problems Number Problems: 1. Consecutive. The sum of two consecutive integers is 15. Find the numbers. Solution: I will represent the first number by "n". Then the second number has to be "n + 1". Their sum is then: n + (n + 1) = 15 2n + 1 = 15 2n = 14 n = The exercise did not ask me for the value of the variable n; it asked for the identity of two numbers. So my answer is not "n = 7"; the actual answer is: "The numbers are 7 and 8." 2. Consecutive Odd. The lengths of the sides of a triangle are consecutive odd numbers. What is the length of the longest side if the perimeter is 45? Solution: Let x = length of shortest side x + 2 = length of medium side x + 4 = length of longest side Plug in the values from the question and from a sketch. 45 = x + x + 2 + x + 4 Combine like terms 45 = 3x + 6 Isolate variable x 3x = 45 – 6 3x = 39 x =13 Check your answer 13 + 13 + 2 + 13 + 4 = 45 3. Consecutive Even. The product of two consecutive negative even integers is 24. Find the numbers. Solution: (n)(n + 2) = 24 n2 + 2n = 24 n2 + 2n – 24 = 0 (n + 6)(n – 4) = 0 Then the solutions are n = –6 and n = 4. Since the numbers I am looking for are negative, I can ignore the "4" and take n = –6. Then the next number is n + 2 = –4, and the answer is The numbers are –6 and –4. ...

Words: 1060 - Pages: 5

Premium Essay

...rewarded when correct solution is achieved. “The harder the struggle, the sweeter the victory is a common expression. This study was brought about when Mathematics, especially problem solving processes, Mathematics interest and Mathematics aptitude. Problem solving, which the National Council for Teacher in Mathematics (NCTM) 1980’s widely heralded statement in its agenda for action and problem solving has been the theme of the council. Knowledge and skills of Mathematics problem solving is believed to help school goers solve problems in their day to day of existence. The ancient claimed “Mathematics is the queen of Knowledge,” hence it is only right to say that Mathematics enhanced students understanding of the important principles in math, that is, as a cooperative and never ending process. Mathematics also made them exert more effort in improving their achievement and inspire them in relating Mathematics and applications for the...

Words: 963 - Pages: 4

Free Essay

...Contents 0. Preface 1. Functions and Models 1.1. Basic concepts of functions 1.2. Classiﬁcation of functions 1.3. New functions from old functions 1 2 2 5 8 0. Preface Instructor: Jonathan WYLIE, mawylie@cityu.edu.hk Tutors: Radu Gogu, rgogu2@student.cityu.edu.hk. Texts: Single Variable Calculus, by James Stewart, 6E. In this semester, we will cover the majority of Chap 1-4, 7, 12. Upon completion of this course, you should be able to understand limit, derivatives, and its applications in mathematical modeling and inﬁnite series. 1 2 1. Functions and Models In this chapter, we will brieﬂy recall functions and its properties covered by high school. 1.1. Basic concepts of functions. Text Sec1.1: 5, 7, 39, 57, 67. Deﬁnition 1.1. A function f is a rule that assigns to each element x in a set D exactly one element, called f (x), in a set E. Usually, we write a function f : x → f (x) where (1) x ∈ D, i.e. x belongs to a set D , called the Domain; (2) f (x) ∈ E, i.e. f (x) belongs to a set E, called the Range; (3) x is independent variable, (4) f (x) is dependent variable. 3 For a function f , its graph is the set of points {(x, f (x)) : x ∈ D} in xy-plane. One can also use a table to represent a function. Example 1.1. Sketch the graph of following two piecewise deﬁned functions. (1) f (x) = |x|. i.e. Absolute value of x. (2) f (x) = [x]. i.e. largest integer not greater than x. The graph of a function is a curve. But the question is: which curves are graphs......

Words: 1069 - Pages: 5