Free Essay

Wgu Biochemistry


Submitted By Mrobins12358
Words 998
Pages 4
Western Governors University
GRT Task 5: Lipids, The Importance of Fat in the Diet

Melissa Robinson
Student ID: 000389892 June 2015

Fat is often maligned in the media, and is often named “public enemy #1” because of the obesity epidemic that our country has been struggling against for several years. However, fat is an essential component in the human body. Fat must be taken in and used by the body to maintain health. That said, moderation is key. Too much of a good thing, can lead to other health issues, as seen by the obesity level in this country. It is important to strike a balance between healthy consumption of fats that the body needs to function, and the other end of the spectrum, too much fat or no fat at all in the diet. Below is a brief overview of how the body uses fats, known as lipids, in the body and why lipids are essential to the body’s health.
A. Energy Stored as Fat
Food is often shared with others socially and enjoyed for its taste and aroma.
Fatty foods are often considered pleasurable to eat because they provide people with richness of flavor, texture and an overall feeling of satisfaction. However, fat in foods is not just there for pleasure. The body uses fat an energy source. The fat is stored in tissue called “adipose tissue.” A special type of molecule, called a triglyceride, is used by the body to store fat. Triglycerides are used as large, fat storage energy units (Wolfe, 2014).
Triglycerides consist of three fatty acids and one glycerol molecule. To turn this fat storage into energy a triglyceride is broken down into smaller molecules through a catabolic process. Through the process of glycolysis, triglyceride molecules are broken down by glyceraldahyde-3 phosphate into three free fatty

acids and one glycerol molecule (Wolfe, 2014). From there, B oxidation takes place and fatty acids are further broken down into two carbon sub units and made into Acetyl Co-A. Once that process is complete, they enter into the citrate cycle within the mitochondria where it is converted into ATP (O’Malley, 2014).
B. Fatty Acids:
1. Compare three features of saturated and unsaturated fatty acids. and create a 3-D model of a saturated fatty acid and an unsaturated fatty acid.
(See attached photos of the 3-D models of an unsaturated fatty acid and a saturated fatty acids.)



1. Irregular conformation

1. Continuous,regular conformation

2. Have double bonds

2. Do not have double bonds

3. Liquid at room temperature

3. Solid at room temperature

Example: Olive oil

Example: Butter

4. Usually plant sources

4. Usually animal sources

5. Help lower triglyceride

5. Raise triglyceride and cholesterol

and cholesterol levels

levels in the body

in the body
2. Three Roles of Fatty Acids in the Body:
1. When broken down, fatty acids produce ATP. Fatty acids provide the body with an easily stored, concentrated source of energy

2. Fatty acids provide a cushion for the protection of vital organs. They also help regulate the body’s temperature by providing a layer of insulation under the skin
3. Fatty acids help the body absorb and store fat soluble vitamins A, D, E,
K and essential fatty acids. These vitamins are then used by the body to help support immunity, growth, cell repair and development, and blood clotting.
C. Fluid Mosaic Diagram: See attached Fluid Mosaic Diagram
D. Two examples of how no-fat diets affect the body.
As previously stated, fat is necessary for the body to remain healthy. Fat is needed for the body to function and perform essential tasks including energy production, protection of vital organs, and body heat regulation. No fat and extremely low fat diets can also contribute to poor absorption of the fat soluble vitamins A, D, E and K. Fat soluble vitamins are reserved in the liver and stored in the body’s adipose tissue. They are used by the body for growth, immunity, cell repair and blood clotting. Not taking in adequate amounts of these vitamins will cause a deficiency that leads to several health problems (Bellows, 2012).
Fat provides energy and prevents lethargy. If a body is not taking in enough fat, low energy levels result. Feeling fatigued or run down is common, and the metabolism slows down in an attempt to conserve energy. So, if people are eating a no fat or low fat diet in order to lose weight, it is not going to happen. To lose weight, a person needs to increase their metabolic rate. Increasing the metabolic rate requires energy expenditure. Fat is necessary to provide the

energy a person will need to lose weight. Low fat and no fat diets are counter productive for weight loss (Ophardt, 2014).
Low fat diets have been found to produce higher blood triglycerides, which is unhealthy and contributes to cardiovascular disease. Good fats, in moderation, increase the high density lipids in the body which can decrease the risk for cardiovascular disease (Best, 2014).
Bellows, L. & Moore, R. (2011-2012) Fat-Soluble Vitamins: A, D, E, and K.
Retrieved from 09315.html


Best, B. (December 16, 2014). Fats You Need - Essential Fatty acids. Retrieved from


O'malley, M. (2014) Fatty acid oxidation leads to ATP production. Retrieved from !

Ophardt, C. (2003). Energy for the Human Body. Virtual Chembook. Retrieved from


Ophardt, C. (2003). Energy Storage. Virtual Chembook. Retrieved from http:// Ophardt, C. (2003). Overview of Metabolism. Virtual Chembook. Retrieved on
2/10/14, from


Wolfe, George. (2014) “Thinkwell’s Biology. The Electron Transport Train”
Retrieved from levelThreeID=1820596&levelTwoID=350662§ionId=22985

Similar Documents

Premium Essay

Biochemistry Wgu

...This document is designed to help you organize your task as you work through the cohort. Please make a copy of this document, which will then appear in your Google Drive. (See below.) If you would like a tutorial on using Google Drive, please click here. Then insert your work into the copied document as instructed. We recommend you do your work in black, and delete all of the blue text prior to submitting your task. When your document is ready to go, save it as a PDF. You can upload this PDF to Taskstream and submit! Protein Structure A. Insert your original model of an essential amino acid that shows all atoms and bonds in both the backbone and the side chain. Click here to learn how to insert images into a Google Document. (Insert in-text citation here). 1 Characteristics of Leucine: Hydrophobic Oxygenation Insert your description of two characteristics (e.g., reactivity, hydrophobicity, how it affects the structure or functions of a protein) for the amino acid model you created in part A. (Insert in-text citation here). B. Insert your original diagram, or series of original diagrams, of the different levels of protein structure. 1. Check to see that you labeled the primary, secondary, tertiary, and quaternary structures in your diagram(s). Primary Secondary Tertiary quaterrnary (Insert in-text citation here). C. Insert your original diagram, or series...

Words: 656 - Pages: 3

Free Essay

Wgu - Biochemistry

...Hindawi Publishing Corporation International Journal of Hepatology Volume 2012, Article ID 487480, 6 pages doi:10.1155/2012/487480 Review Article Acute Liver Failure Caused by Amanita phalloides Poisoning Luca Santi,1 Caterina Maggioli,1 Marianna Mastroroberto,2 Manuel Tufoni,1 Lucia Napoli,1 and Paolo Caraceni1 1 U.O. Semeiotica Medica, Department of Clinical Medicine, Alma Mater Studiorum University of Bologna, Via Albertoni 15, 40138 Bologna, Italy 2 S.S.D. Liver Transplant, Department of Clinical Medicine, Alma Mater Studiorum University of Bologna, Via Albertoni 15, 40138 Bologna, Italy Correspondence should be addressed to Paolo Caraceni, Received 4 May 2012; Accepted 11 May 2012 Academic Editor: Bruno Nardo Copyright © 2012 Luca Santi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Mushroom poisoning is a relatively rare cause of acute liver failure (ALF). The present paper analyzes the pathogenesis, clinical features, prognostic indicators, and therapeutic strategies of ALF secondary to ingestion of Amanita phalloides, which represents the most common and deadly cause of mushroom poisoning. Liver damage from Amanita phalloides is related to the amanitins, powerful toxins that inhibit RNA polymerase II resulting in a deficient protein synthesis and cell...

Words: 4886 - Pages: 20

Premium Essay

Wgu Grt3 Biochemistry

...Enzymology and Catalytic Mechanisms GRT3 Enzymes are proteins that speed up chemical reactions. They are catalyst. Without catalyst, chemical reactions would still take place, but at a slower rate and the body wouldn’t benefit. All enzymes possess two essential properties. First, enzymes accelerate the rate of chemical reactions without being consumed and/or changed by the reaction. Second, enzymes accelerate reaction rates without changing the chemical equilibrium among reactants and products. Each enzyme has a receptor site, and they are very specific to which molecule (substrate) it will interact with. When a substrate is captured, it will either be combined to create a product or it will be broke down. Fructose is primarily metabolized in the liver. Fructose alone cannot be used as energy. It has to be broke down for use. Enzymes in the liver aid fructose metabolism. Fructose binds to the receptor site on the enzyme fructokinase. This enzyme uses ATP and ADP cycle (energy) to speed up the chemical reaction to convert fructose into Fru-1-p. Next, Fru-1-p will undergo the next reaction and will produce either DHAP or glyceraldehyde by way of the enzyme Aldolase B. (Wikipedia, 2015) As stated above, Aldolase B is active specific to the substrate Fructose-1-Phosphate. Fructose-1-phos is derived from fructose. It’s produced by fructokinase which is available in the liver. It’s converted by aldolase B into dihydroxyacetone phosphate and glyceraldehyde. A deficiency...

Words: 1179 - Pages: 5

Free Essay

Bio Chem Task 2

...Smith 1                          Heather Smith  477126  Biochemistry  WGU  August 24, 2015                                      Smith 2    Model of Essential Amino Acid    Essential amino acids are those amino acids in which the body can not make on its own,  instead they must be procured through the foods that we eat (Helmenstein).  Lysine is one of the  essential amino acids. Two of the​  ​ chemical properties of lysine are that it is positively charged  and it is hydrophilic, which means water loving so it easily dissolves in water (National Center  for Biotechnology Information).            Smith 3  Each NH2 contains one nitrogen atom and two hydrogen atoms­ represented on the diagram as  intertwining pipe cleaners color coded to there respective elements (ie NH2 has blue and neon)    Each CH2 contains one carbon atom and two hydrogen atoms (pink and neon)    OH contains one oxygen atom and one hydrogen atom (orange and neon)        Diagram of Protein Structure              Smith 4                        Dehydration : Creating a Peptide Bond                Smith 5                        Diagram: Peptide Bond Broken by Hydrolysis                Smith 6        The Four Forces that Stabilize Proteins at Tertiary Level      The tertiary structure of proteins are dictated by several factors. Non polar molecules are  also hydroph...

Words: 861 - Pages: 4

Premium Essay

Biochemistry Task 4 Wgu

...Task 4: Metabolism 1. They speed up reactions and do not change themselves, which means they can be used over and over. Enzymes help facilitate chemical reactions. Enzymes will lower the activation energy needed to start the reaction and that is how the reaction will be sped up. Enzymes are specific for certain reactions and are proteins. Not all catalysts though are enzymes. (Sanders, 2014) 2. (Gresham HS IB Biology, 2007) 3. (Hudon-Miller, S. 2012) 4 & 5. When table sugar is consumed, it is broken down into glucose and fructose. Glucose is used in the blood stream. Glucose can be stored in the liver as glycogen. Fructose does enter glycolysis, but first two steps are original to fructose. The first step involves breaking down fructose into fructose-1 phosphate by the enzyme, fructokinase. Fructose is the substrate of fructokinase and it’s product is fructose-1 phosphate. Fructose-1 phosphate is converted into DHAP and glyceraldehyde (products), by the enzyme aldolase B which will enter the glycolysis pathway. (Hudon-Miller, S. 2012) In HFI, there is an aldolase deficiency, so there is no conversion of fructose-1 phosphate into DHAP and glyceraldehyde, so they do not enter the glycolysis pathway to produce ATP or in gluconeogenesis. The fructose is still achieving phosphorylation by fructokinase, which results in a build up of fructose-1 phosphate. The liver cells are unable to utilze fructose as energy. There becomes an abundant buildup of fructose-1...

Words: 756 - Pages: 4

Premium Essay

Wgu Biochemistry Task 5

...1. Lipids to ATP * Hydrolysis is the first step in the breakdown of lipids. This happens in the cytoplasm, to produce fatty acids and glycerol. The glycerol is then metabolized into dihydroxyacetone phosphate. This hydroxyacetone is further metabolized into one of two compounds: pyruvic acid (for energy) or glucose-6-phosphate (during gluconeogenesis). * Fatty acids are catabolized into Acetyl Coenzyme-A, during something called the fatty acid spiral, which is then transformed into ATP, carbon dioxide, and water using the electron transport chain and the citric acid cycle. * ATP is created from both the citric acid cycle and the fatty acid spiral (Brandt, n.d.). 2.  Saturated vs Unsaturated fatty acids  * Saturated fatty acids: carbons are single bonded, solid at room temperature * Unsaturated fatty acids: carbons are double bonded, liquid at room temperature (Fatty Acid, 2015) 1.  Saturated Fatty Acid 2.  Unsaturated Fatty Acid 3. 4.  No-Fat Diets * Non-fat diets are detrimental to the body, because vitamin-D, an essential vitamin, cannot be absorbed without lipids (fats). Vitamin D is essential to the absorption of vitamin C and phosphate. Vitamin C and phosphate are necessary for bone structure, neuromuscular function, and immune function. * Lipids are also necessary for the absorption of estrogen, one of the hormones responsible for reproduction, related to fetal growth and uterine changes during pregnancy. Without fat in the diet...

Words: 298 - Pages: 2

Premium Essay

Biochemistry Task 2 Wgu

...Biochemistry Task 2 Brandy McDowell 000499302 November 30, 2015 A. (Lyman, 2013) B. (Wolfe, 2000) (Wolfe, 2000) B. (Wolfe, 2000) (Wolfe, 2000) C. (Hudon-Miller, 2012) D. (Hudon-Miller, 2012) E. The four forces that stabilize a protein. * Hydrophobic interactions which are interactions by nonpolar amino acids. The weakest of the four types of bonds. * Hydrogen bond made up of interactions of polar or charged amino acids. The amino acids share their hydrogen. This is also a weak bond, but it is stronger than the hydrophobic interaction. * Ionic bonds are made up of charged amino acids. A positive charge of an amino acid attracts to a negative charge of another amino acid. This bond is a little stronger than the hydrogen bond, but not as strong as the polypeptide bond. * Disulfide bond only occurs between two cysteine amino acids. Two cysteine amino acids form a sulfa-sulfa bridge. This is a strong covalent interaction. (Borges, 2014) F1.  Explain the role of prions in BSE, including each of the following: ●How prions are formed – Prions are malformed proteins. Instead of reproducing, the prions cause normal proteins to change to the malformed version. The normal prion (PrPc) is bound to the surface of neurons. PrPc can be altered and become misfolded taking on a different conformation which is then known as PrPsc. ●The connection between misfolding and aggregation – Because the misfolded prions are hydrophobic...

Words: 664 - Pages: 3

Premium Essay

Wgu Biochemistry Task 3

...A. 1. Oxygentated blood has picked up oxygen from the lungs. Deoxygenated blood has had most of its oxygen removed and needs to return to the lungs for re-oxygenation. Oxygenated blood is bright red. Deoxygenated blood is dark red. Oxygenated blood cells have a relaxed shape whereas deoxygenated blood cells have a tense shape. 2. Carbon dioxide concentration decreases as blood nears the lungs, which in return causes and increase in pH . Increased pH causes increased affinity for oxygen which causes the hemoglobin to pick up oxygen entering your blood to be transported to the body’s tissue. Hemoglobin loses hydrogen ions from specific amino acids at key sites as pH rises causing slight changes in its structure that increase its ability to bind oxygen. As pH falls hemoglobin picks up hydrogen ions and its affinity for oxygen decreases. Increasing carbon dioxide concentration in your tissues cause a decrease in pH, which in turn forces hemoglobin to dump the oxygen it's carrying so your cells can use it for energy . a. 3. B. 1. 2. 3. Diseased cells have lower than normal ability to transport oxygen. Sickle cell hemoglobin is stiff and sticky. They stick together and do not flow through vessels easily causing blockages. The blockages caused by sickle cells affect oxygen being transported to tissues in the body. 4. a. Sickle cell disease is an inherited...

Words: 338 - Pages: 2

Premium Essay

Wgu Biochemistry Task 5

...A. Explain how lipids, in the form of triglycerides, are broken down to produce ATP, including ​each​ of the following: Triglycerides are first broken down to fatty acids and glycerol by separating the bond between the glycerol and the fatty acid. The fatty acids undergo beta oxidation and are broken into two carbon units. The carbon subunits generate Acetyl­CoA. (O’Malley 2014) During beta oxidation hydrogen and electrons are removed from the fatty acids and are carried by NADH and FADH2 to the electron transport chain to generate ATP. Acetyl­CoA enters the citric acid cycle which removes electrons and hydrogen. NADH and FADH2 is used to carry the ions to the electron transport chain to form ATP. B. Explain two differences between saturated and unsaturated ​fatty acids​ (not fats). A saturated fatty acids has hydrogen on all points of its chemical chain. Unsaturated fatty acids will have a pair of hydrogen missing on its chain. Saturated fats are solid at room temperature vs liquid for unsaturated. 1. Create ​one​ original 3­D model to demonstrate the chemical structure of a saturated fatty acid. 2. Create one original 3­D model to demonstrate the chemical structure of an unsaturated fatty acid. C. Create an original diagram, with clear labels, to demonstrate the fluid mosaic structure of cell membranes. D. Explain how no­fat diets can affect the body (e.g., nutrient absorption, essential fatty acids), including ​each​ of...

Words: 469 - Pages: 2

Premium Essay

Wgu Biochemistry Task 1

...Biochemistry Task 1 Candy Hughes 000515305 January 1, 2016 A. (Brown, 2010) B (Ly, Sklar, Pesavento, and Sternberg., 2010) C. (Chen, 2010)    (Chen, 2010) D. The death cap mushrooms produce a toxin called Amanita phalloides, this toxin can be fatal to humans. Amatoxins are comprised of a ring of amino acids that hinder the production of specific proteins within liver and kidney cells. Without these proteins, cells can no longer to function adequately. (Fisher and Bennette,2012) Amanita phalloides have the ability to inhibit an enzyme called RNA polymerase II, this enzyme allows mRNA to take place. mRNA is the processes of making a copy of DNA. In the eukaryotic cells, the amanitin toxin directly interacts with an enzyme called RNA polymerase II; thus, decreasing transcription of mRNA (Nardo, 2012). Thus causing cellular death. Reference Chen, P. (2010). Retrieved December 28,2015 from Brown, A. (2010) Theory of Knowledge Biology Topic 3.4 DNA Replication. Retrieved December 27, 2015from Fischer and Bessette. (1992) Edible Wild Mushrooms of North America. retrieved December 28,2015 from Ly, M., Sklar, B., Pesavento, N., and Sternberg, Z. (2010) Retroviruses: What are Retroviruses. Retrieved...

Words: 252 - Pages: 2

Free Essay


...Date Sheet for Sciences General/ Core Courses/All Major Mid Term Examinations -Fall 2013 Semester Date & Day Sem 09:30 -11:00 Sec No. Room No. Teacher's Name Tooba Mohtsham Dr. Shahnaz Ch. Dr. Shahnaz Ch. Sem 11:30 -01:00 Sec No. Room No. Teacher's Name Sem Asifa Kayani Dr. Nikhat Khan 7 7 7 01:30 -03:00 Sec No. Room No. Teacher's Name 1 Introductory Biochemistry Introduction to Biotechnology Molecular Biotechnology A A A 9 35 4 Sci Y Sci Y Sci Y 3 3 Microbiology Electricity and Magnetism A A 56 31 NB-15 NB-8 Data Analysis & Report Writing A Data Analysis & Report Writing B Data Analysis & Report Writing C 33 NB-14 Farah Arif Munaza Bajwa Itrat Batool Naqvi 21-Oct-13 1 5 41 Main Lab NB-7 1 1 English-I English-I N K 25 44 SCI Y SCI Z Sadia Ghaznavi Nasreen Pashsa 3 Mathematics A 28 NB-36 Nighat Altaf 5 Molecular Physiology A 16 SCI 9 SCI 6 SCI 8 SCI 12 SCI 12 Tooba Mohtsham Asifa Kayani Saleha Mehboob Ayesha Aftab Gaitee Joshua 22-Oct-13 Basic Concepts of Environmental Sciences 24 5 A Data Handling and Atomic Spectroscopy 5 A 5 5 Electrical Instrumentation Human and Animal Behavior A A 9 9 12 7 Advanced Topics in Molecular BiologyA 7 7 Medical Biotechnology Plant Ecology A A 19 33 3 SCI 6 SCI R SCI 6 SCI 7 SCI 7 SCI 8 SCI8 Dr.Hooria Younas Dr. Amber Shehzadi Asifa Kayani Ayesha Roohi Saleha Mehboob Saima Mubeen Dr. Saleema...

Words: 918 - Pages: 4

Premium Essay


...Carbohydrates Carbohydrates are the sugars, starches and fibers found in fruits, grains, vegetables and milk products. They are called carbohydrates because, at the chemical level, they contain carbon, hydrogen and oxygen. Carbohydrates provide fuel for the central nervous system and energy for working muscles. Carbohydrates are classified as simple or complex. Simple carbohydrates contain just one or two sugars, such as fructose (fruits) and galactose (milk products). These single sugars are called monosaccharides. Carbs with two sugars — such as sucrose (table sugar), lactose (dairy) and maltose are called disaccharides. Complex carbohydrates, which are also called polysaccharides have three or more sugars. They are often referred to as starchy foods and include beans, lentils, potatoes, corn, whole-grain breads and cereals. Lipids Lipids are molecules that contain hydrocarbons and make up the building blocks of the structure and function of living cells. Examples of lipids include fats, oils, waxes, certain vitamins, hormones and most of the non-protein membrane of cells. Lipids are not soluble in water. They are non-polar and hydrophobic. Lipids contains a functional group including neutral fats, waxes, phospholipids, and glycolipids. The fatty acids with no carbon-carbon double bonds are called saturated. The ones that have two or more double bonds are called polyunsaturated.  Proteins Proteins are large biomolecules, or macromolecules. They are made up of hundreds or...

Words: 371 - Pages: 2

Premium Essay

Macromolecules and Their Parts

...There are four macromolecules that make up all living things. These macromolecules are proteins, carbohydrates, lipids, and nucleic acids. All of these macromolecules are formed from functional groups. The functional group hydroxyl is found in every macromolecule. All of these macromolecules except for lipids are hydrophilic. All of these macromolecules are broken down into monomers by hydrolysis reactions. Proteins have methyl groups, amino groups, and carboxyl groups. Proteins are polymers of amino acids. Proteins functions are determined by how they are folded. Proteins with a primary structure have no function. Proteins with a secondary structure are in the shape of an alpha helix but still have no function. Once a protein achieves tertiary structure that protein has a function. Quaternary structures in proteins are made of many motifs and have the most advanced functions of all the structures, many of them being enzymes due to their three dimensional structure. However, a protein can become unfolded, and once it does it cannot be reversed, this is called denaturation and makes the protein loose its functions. All proteins and polypeptides are links of amino acids held together by peptide bonds. Peptide bonds are formed between two molecules when the carboxyl group and the amino groups in two atoms react which causes dehydration synthesis. Carbohydrates have carbonyl groups, and are organic compounds every time due to the presence of a carbon atom and also have hydrocarbons...

Words: 491 - Pages: 2

Free Essay


...Introduction: Yeast cells are simple, unicellular, eucaryotic organisms belonging to the Fungi kingdom. These cells are particularly important as tools for research because they share structural and compositional similarity with cells of higher organisms. This experiment makes use of these similarities to study individual macromolecular components found within all living cells. Through this experiment we will learn the basic sub-units that make up each of these macromolecules while also learning some of their important structural characteristics. This experiment will consist of two parts. The first of which will divide the yeast cells into three of its major macromolecular components: nucleic acids, proteins and polysaccharides. These components are large macromolecules that are quite unique in their composition, structure and function. However, they share a common feature as each macromolecule is composed of repeating subunits, characteristic of the macromolecule. The subunits are linked together by a bond between two adjacent subunits, formed by the loss of water (condensation). Thus, macromolecules can be broken down by the addition of water across the bond, in a process known as hydrolysis. This process was used in the experimental procedure to allow analysis of each individual macromolecule in its subunit form. Proteins are hydrolyzed into amino acids, nucleic acids are hydrolyzed into sugar, base and phosphate, and polysaccharides are broken down into simple sugars...

Words: 728 - Pages: 3

Free Essay

Empirical Procedure

...Biochemistry Empirical procedure for purifying Enzyme X:     1.   To begin the purification process, mix blue green algae with an appropriate quantity of a buffer and triturate through use of a mechanical crushing process. Centrifuge at 4 degrees C for 10 min at 5,000 rpm. Next, determine whether the supernatant and the precipitate has the highest specific activity of the desired enzyme. The specific activity is the ratio of biochemical activity to the weight or volume of total protein present. The portion containing the greatest concentration of the desired enzyme would be kept for further fractionation and testing. Use of substances such as ammonium sulfate or polyethylene glycol that compete for water with the macromolecules could then be employed. This process, known as "salting out" the organic material from water by varying the solvent ratio or through doing another assay measuring the specific activity. Again, the portion containing the lesser amount would be discarded. Affinity chromatography would next be performed to identify the active enzyme based on the principal that enzymes attach to specific substrates and that specific receptors selectively bind the enzyme, impeding its passage in solution. Next, electrophoresis would be performed to help determine the purity of the compound.  In electrophoresis, substances are first sorted by size and charge, and then by charge. There will be a separation of bands in the electrophoresis that corresponds to the...

Words: 313 - Pages: 2